Ozone Groups and Centers of Skew Polynomial Rings
Abstract We introduce the ozone group of a noncommutative algebra $A$, defined as the group of automorphisms of $A$, which fix every element of its center. In order to initiate the study of ozone groups, we study polynomial identity (PI) skew polynomial rings, which have long proved to be a fertile...
Gespeichert in:
Veröffentlicht in: | International mathematics research notices 2024-04, Vol.2024 (7), p.5689-5727 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
We introduce the ozone group of a noncommutative algebra $A$, defined as the group of automorphisms of $A$, which fix every element of its center. In order to initiate the study of ozone groups, we study polynomial identity (PI) skew polynomial rings, which have long proved to be a fertile testing ground in noncommutative algebra. Using the ozone group and other invariants defined herein, we give explicit conditions for the center of a PI skew polynomial ring to be Gorenstein (resp. regular) in low dimension. |
---|---|
ISSN: | 1073-7928 1687-0247 |
DOI: | 10.1093/imrn/rnad235 |