Ozone Groups and Centers of Skew Polynomial Rings

Abstract We introduce the ozone group of a noncommutative algebra $A$, defined as the group of automorphisms of $A$, which fix every element of its center. In order to initiate the study of ozone groups, we study polynomial identity (PI) skew polynomial rings, which have long proved to be a fertile...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International mathematics research notices 2024-04, Vol.2024 (7), p.5689-5727
Hauptverfasser: Chan, Kenneth, Gaddis, Jason, Won, Robert, Zhang, James J
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract We introduce the ozone group of a noncommutative algebra $A$, defined as the group of automorphisms of $A$, which fix every element of its center. In order to initiate the study of ozone groups, we study polynomial identity (PI) skew polynomial rings, which have long proved to be a fertile testing ground in noncommutative algebra. Using the ozone group and other invariants defined herein, we give explicit conditions for the center of a PI skew polynomial ring to be Gorenstein (resp. regular) in low dimension.
ISSN:1073-7928
1687-0247
DOI:10.1093/imrn/rnad235