The F-Signature Function on the Ample Cone

Abstract For any fixed globally $F$-regular projective variety $X$ over an algebraically closed field of positive characteristic, we study the $F$-signature of section rings of $X$ with respect to the ample Cartier divisors on $X$. In particular, we define an $F$-signature function on the ample cone...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International mathematics research notices 2023-07, Vol.2024 (3), p.2420-2460
Hauptverfasser: Lee, Seungsu, Pande, Swaraj
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract For any fixed globally $F$-regular projective variety $X$ over an algebraically closed field of positive characteristic, we study the $F$-signature of section rings of $X$ with respect to the ample Cartier divisors on $X$. In particular, we define an $F$-signature function on the ample cone of $X$ and show that it is locally Lipschitz continuous. We further prove that the $F$-signature function extends to the boundary of the ample cone. We also establish an effective comparison between the $F$-signature function and the volume function on the ample cone. As a consequence, we show that for divisors that are nef but not big, the extension of the $F$-signature is zero.
ISSN:1073-7928
1687-0247
DOI:10.1093/imrn/rnad174