The F-Signature Function on the Ample Cone
Abstract For any fixed globally $F$-regular projective variety $X$ over an algebraically closed field of positive characteristic, we study the $F$-signature of section rings of $X$ with respect to the ample Cartier divisors on $X$. In particular, we define an $F$-signature function on the ample cone...
Gespeichert in:
Veröffentlicht in: | International mathematics research notices 2023-07, Vol.2024 (3), p.2420-2460 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
For any fixed globally $F$-regular projective variety $X$ over an algebraically closed field of positive characteristic, we study the $F$-signature of section rings of $X$ with respect to the ample Cartier divisors on $X$. In particular, we define an $F$-signature function on the ample cone of $X$ and show that it is locally Lipschitz continuous. We further prove that the $F$-signature function extends to the boundary of the ample cone. We also establish an effective comparison between the $F$-signature function and the volume function on the ample cone. As a consequence, we show that for divisors that are nef but not big, the extension of the $F$-signature is zero. |
---|---|
ISSN: | 1073-7928 1687-0247 |
DOI: | 10.1093/imrn/rnad174 |