Higher Gaussian Maps on K3 Surfaces
We give sufficient conditions for the surjectivity of higher Gaussian maps on a polarized K3 surface. As an application, we show that the $k$-th Gaussian map for a general curve of genus $g$ (that depends quadratically with $k$) is surjective. Along the proof, we also exhibit an ampleness criterion...
Gespeichert in:
Veröffentlicht in: | International mathematics research notices 2024-05, Vol.2024 (10), p.8185-8212 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8212 |
---|---|
container_issue | 10 |
container_start_page | 8185 |
container_title | International mathematics research notices |
container_volume | 2024 |
creator | Ríos Ortiz, Ángel David |
description | We give sufficient conditions for the surjectivity of higher Gaussian maps on a polarized K3 surface. As an application, we show that the $k$-th Gaussian map for a general curve of genus $g$ (that depends quadratically with $k$) is surjective. Along the proof, we also exhibit an ampleness criterion for divisors in the Hilbert scheme of two points of a K3 surface. |
doi_str_mv | 10.1093/imrn/rnad165 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1093_imrn_rnad165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1093_imrn_rnad165</sourcerecordid><originalsourceid>FETCH-LOGICAL-c235t-f735afd5a7aebb5c1c5337a066fa5315e5cd66cb215a1d0d09dcfa2ab40f0b603</originalsourceid><addsrcrecordid>eNotz01LAzEUheEgCtbqzh8w4NbYm9zeZGYpRVux0kV1HW6-dMROS2IX_nstdnXe1YFHiGsFdwo6nPSbMkzKwFEZOhEjZVorQU_t6V-DRWk73Z6Li1o_ATSoFkfiZtG_f6TSzHlfa89D88K72myH5hmb9b5kDqleirPMXzVdHXcs3h4fXmcLuVzNn2b3Sxk00rfMFolzJLacvKegAiFaBmMyEypKFKIxwWtFrCJE6GLIrNlPIYM3gGNx-_8byrbWkrLblX7D5ccpcAegOwDdEYi_MkJE1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Higher Gaussian Maps on K3 Surfaces</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Ríos Ortiz, Ángel David</creator><creatorcontrib>Ríos Ortiz, Ángel David</creatorcontrib><description>We give sufficient conditions for the surjectivity of higher Gaussian maps on a polarized K3 surface. As an application, we show that the $k$-th Gaussian map for a general curve of genus $g$ (that depends quadratically with $k$) is surjective. Along the proof, we also exhibit an ampleness criterion for divisors in the Hilbert scheme of two points of a K3 surface.</description><identifier>ISSN: 1073-7928</identifier><identifier>EISSN: 1687-0247</identifier><identifier>DOI: 10.1093/imrn/rnad165</identifier><language>eng</language><ispartof>International mathematics research notices, 2024-05, Vol.2024 (10), p.8185-8212</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c235t-f735afd5a7aebb5c1c5337a066fa5315e5cd66cb215a1d0d09dcfa2ab40f0b603</citedby><cites>FETCH-LOGICAL-c235t-f735afd5a7aebb5c1c5337a066fa5315e5cd66cb215a1d0d09dcfa2ab40f0b603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ríos Ortiz, Ángel David</creatorcontrib><title>Higher Gaussian Maps on K3 Surfaces</title><title>International mathematics research notices</title><description>We give sufficient conditions for the surjectivity of higher Gaussian maps on a polarized K3 surface. As an application, we show that the $k$-th Gaussian map for a general curve of genus $g$ (that depends quadratically with $k$) is surjective. Along the proof, we also exhibit an ampleness criterion for divisors in the Hilbert scheme of two points of a K3 surface.</description><issn>1073-7928</issn><issn>1687-0247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotz01LAzEUheEgCtbqzh8w4NbYm9zeZGYpRVux0kV1HW6-dMROS2IX_nstdnXe1YFHiGsFdwo6nPSbMkzKwFEZOhEjZVorQU_t6V-DRWk73Z6Li1o_ATSoFkfiZtG_f6TSzHlfa89D88K72myH5hmb9b5kDqleirPMXzVdHXcs3h4fXmcLuVzNn2b3Sxk00rfMFolzJLacvKegAiFaBmMyEypKFKIxwWtFrCJE6GLIrNlPIYM3gGNx-_8byrbWkrLblX7D5ccpcAegOwDdEYi_MkJE1A</recordid><startdate>20240522</startdate><enddate>20240522</enddate><creator>Ríos Ortiz, Ángel David</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240522</creationdate><title>Higher Gaussian Maps on K3 Surfaces</title><author>Ríos Ortiz, Ángel David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c235t-f735afd5a7aebb5c1c5337a066fa5315e5cd66cb215a1d0d09dcfa2ab40f0b603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ríos Ortiz, Ángel David</creatorcontrib><collection>CrossRef</collection><jtitle>International mathematics research notices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ríos Ortiz, Ángel David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Higher Gaussian Maps on K3 Surfaces</atitle><jtitle>International mathematics research notices</jtitle><date>2024-05-22</date><risdate>2024</risdate><volume>2024</volume><issue>10</issue><spage>8185</spage><epage>8212</epage><pages>8185-8212</pages><issn>1073-7928</issn><eissn>1687-0247</eissn><abstract>We give sufficient conditions for the surjectivity of higher Gaussian maps on a polarized K3 surface. As an application, we show that the $k$-th Gaussian map for a general curve of genus $g$ (that depends quadratically with $k$) is surjective. Along the proof, we also exhibit an ampleness criterion for divisors in the Hilbert scheme of two points of a K3 surface.</abstract><doi>10.1093/imrn/rnad165</doi><tpages>28</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-7928 |
ispartof | International mathematics research notices, 2024-05, Vol.2024 (10), p.8185-8212 |
issn | 1073-7928 1687-0247 |
language | eng |
recordid | cdi_crossref_primary_10_1093_imrn_rnad165 |
source | Oxford University Press Journals All Titles (1996-Current) |
title | Higher Gaussian Maps on K3 Surfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T18%3A09%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Higher%20Gaussian%20Maps%20on%20K3%20Surfaces&rft.jtitle=International%20mathematics%20research%20notices&rft.au=R%C3%ADos%20Ortiz,%20%C3%81ngel%20David&rft.date=2024-05-22&rft.volume=2024&rft.issue=10&rft.spage=8185&rft.epage=8212&rft.pages=8185-8212&rft.issn=1073-7928&rft.eissn=1687-0247&rft_id=info:doi/10.1093/imrn/rnad165&rft_dat=%3Ccrossref%3E10_1093_imrn_rnad165%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |