Higher Gaussian Maps on K3 Surfaces
We give sufficient conditions for the surjectivity of higher Gaussian maps on a polarized K3 surface. As an application, we show that the $k$-th Gaussian map for a general curve of genus $g$ (that depends quadratically with $k$) is surjective. Along the proof, we also exhibit an ampleness criterion...
Gespeichert in:
Veröffentlicht in: | International mathematics research notices 2024-05, Vol.2024 (10), p.8185-8212 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give sufficient conditions for the surjectivity of higher Gaussian maps on a polarized K3 surface. As an application, we show that the $k$-th Gaussian map for a general curve of genus $g$ (that depends quadratically with $k$) is surjective. Along the proof, we also exhibit an ampleness criterion for divisors in the Hilbert scheme of two points of a K3 surface. |
---|---|
ISSN: | 1073-7928 1687-0247 |
DOI: | 10.1093/imrn/rnad165 |