Schubert Products for Permutations with Separated Descents

Abstract We say that two permutations $\pi $ and $\rho $ have separated descents at position $k$ if $\pi $ has no descents before position $k$ and $\rho $ has no descents after position $k$. We give a counting formula, in terms of reduced word tableaux, for computing the structure constants of produ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International mathematics research notices 2023-10, Vol.2023 (20), p.17461-17493
1. Verfasser: Huang, Daoji
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract We say that two permutations $\pi $ and $\rho $ have separated descents at position $k$ if $\pi $ has no descents before position $k$ and $\rho $ has no descents after position $k$. We give a counting formula, in terms of reduced word tableaux, for computing the structure constants of products of Schubert polynomials indexed by permutations with separated descents, and recognize that these structure constants are certain Edelman–Greene coefficients. Our approach uses generalizations of Schützenberger’s jeu de taquin algorithm and the Edelman–Greene correspondence via bumpless pipe dreams.
ISSN:1073-7928
1687-0247
DOI:10.1093/imrn/rnac299