Homotopies of Constant Cuntz Class
Abstract Let $A$ be a unital simple separable exact C$^{\ast }$-algebra that is approximately divisible and of real rank zero. We prove that the set of positive elements in $A$ with a fixed Cuntz class is path connected. This result applies in particular to irrational rotation algebras and approxima...
Gespeichert in:
Veröffentlicht in: | International mathematics research notices 2023-09, Vol.2023 (18), p.15358-15369 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
Let $A$ be a unital simple separable exact C$^{\ast }$-algebra that is approximately divisible and of real rank zero. We prove that the set of positive elements in $A$ with a fixed Cuntz class is path connected. This result applies in particular to irrational rotation algebras and approximately finite-dimensional (AF) algebras. |
---|---|
ISSN: | 1073-7928 1687-0247 |
DOI: | 10.1093/imrn/rnac267 |