Homotopies of Constant Cuntz Class

Abstract Let $A$ be a unital simple separable exact C$^{\ast }$-algebra that is approximately divisible and of real rank zero. We prove that the set of positive elements in $A$ with a fixed Cuntz class is path connected. This result applies in particular to irrational rotation algebras and approxima...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International mathematics research notices 2023-09, Vol.2023 (18), p.15358-15369
1. Verfasser: Toms, Andrew S
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Let $A$ be a unital simple separable exact C$^{\ast }$-algebra that is approximately divisible and of real rank zero. We prove that the set of positive elements in $A$ with a fixed Cuntz class is path connected. This result applies in particular to irrational rotation algebras and approximately finite-dimensional (AF) algebras.
ISSN:1073-7928
1687-0247
DOI:10.1093/imrn/rnac267