Boucksom–Zariski and Weyl Chambers on Irreducible Holomorphic Symplectic Manifolds

Abstract Inspired by the work of Bauer, Küronya, and Szemberg, we provide for the big cone of a projective irreducible holomorphic symplectic (IHS) manifold a decomposition into chambers (which we describe in detail), in each of which the support of the negative part of the divisorial Zariski decomp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International mathematics research notices 2023-10, Vol.2023 (20), p.17156-17204
1. Verfasser: Denisi, Francesco Antonio
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Inspired by the work of Bauer, Küronya, and Szemberg, we provide for the big cone of a projective irreducible holomorphic symplectic (IHS) manifold a decomposition into chambers (which we describe in detail), in each of which the support of the negative part of the divisorial Zariski decomposition is constant. We see how the obtained decomposition of the big cone allows to describe the volume function. Moreover, similarly to the case of surfaces, we see that the big cone of a projective IHS manifold admits a decomposition into simple Weyl chambers, which we compare to that induced by the divisorial Zariski decomposition. To conclude, we determine the structure of the pseudo-effective cone.
ISSN:1073-7928
1687-0247
DOI:10.1093/imrn/rnac252