Universality for Low-Degree Factors of Random Polynomials over Finite Fields

Abstract We show that the counts of low-degree irreducible factors of a random polynomial $f$ over $\mathbb {F}_q$ with independent but nonuniform coefficients behave like that of a uniform random polynomial, exhibiting a form of universality for random polynomials over finite fields. Our strongest...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International mathematics research notices 2023-08, Vol.2023 (17), p.14752-14794
Hauptverfasser: He, Jimmy, Tuan Pham, Huy, Wenqiang Xu, Max
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract We show that the counts of low-degree irreducible factors of a random polynomial $f$ over $\mathbb {F}_q$ with independent but nonuniform coefficients behave like that of a uniform random polynomial, exhibiting a form of universality for random polynomials over finite fields. Our strongest results require various assumptions on the parameters, but we are able to obtain results requiring only $q=p$ a prime with $p\leq \exp ({n^{1/13}})$ where $n$ is the degree of the polynomial. Our proofs use Fourier analysis and rely on tools recently applied by Breuillard and Varjú to study the $ax+b$ process, which show equidistribution for $f(\alpha )$ at a single point. We extend this to handle multiple roots and the Hasse derivatives of $f$, which allow us to study the irreducible factors with multiplicity.
ISSN:1073-7928
1687-0247
DOI:10.1093/imrn/rnac239