An Atlas Adapted to the Toda Flow

Abstract We describe an atlas adapted to the Toda flow on the manifold of full flags of any non-compact real semisimple Lie algebra and on its Hessenberg-type submanifolds. We show that in the local coordinates of the atlas the Toda flow becomes linear. The local coordinates are also used to show th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International mathematics research notices 2023-08, Vol.2023 (16), p.13867-13908
Hauptverfasser: Martínez Torres, David, Tomei, Carlos
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract We describe an atlas adapted to the Toda flow on the manifold of full flags of any non-compact real semisimple Lie algebra and on its Hessenberg-type submanifolds. We show that in the local coordinates of the atlas the Toda flow becomes linear. The local coordinates are also used to show that the Toda flow on the manifold of full flags is Morse–Smale, which generalizes the result for traceless matrices in [27] to arbitrary non-compact real semisimple Lie algebras. As a byproduct we describe new features of classical constructions in matrix theory.
ISSN:1073-7928
1687-0247
DOI:10.1093/imrn/rnac210