Isobarycentric Inequalities

Abstract We prove the following isoperimetric-type inequality: Given a finite absolutely continuous Borel measure on ${\mathbb {R}}^n$, half-spaces have maximal measure among all subsets with prescribed barycenter. As a consequence, we make progress towards a solution to a problem of Henk and Polleh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International mathematics research notices 2023-07, Vol.2023 (14), p.12298-12323
Hauptverfasser: Gilboa, Shoni, Haim-Kislev, Pazit, Slomka, Boaz A
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract We prove the following isoperimetric-type inequality: Given a finite absolutely continuous Borel measure on ${\mathbb {R}}^n$, half-spaces have maximal measure among all subsets with prescribed barycenter. As a consequence, we make progress towards a solution to a problem of Henk and Pollehn, which is equivalent to a log-Minkowski inequality for a parallelotope and a centered convex body. Our probabilistic approach to the problem also gives rise to several inequalities and conjectures concerning the truncated mean of certain log-concave random variables.
ISSN:1073-7928
1687-0247
DOI:10.1093/imrn/rnac191