The Functional Form of Mahler’s Conjecture for Even Log-Concave Functions in Dimension 2
Abstract Let $\varphi :{\mathbb {R}}^{n}\rightarrow {\mathbb {R}}\cup \{+\infty \}$ be an even convex function and ${\mathcal {L}}{\varphi }$ be its Legendre transform. We prove the functional form of Mahler’s conjecture concerning the functional volume product $P(\varphi )=\int e^{-\varphi }\int e^...
Gespeichert in:
Veröffentlicht in: | International mathematics research notices 2023-06, Vol.2023 (12), p.10067-10097 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
Let $\varphi :{\mathbb {R}}^{n}\rightarrow {\mathbb {R}}\cup \{+\infty \}$ be an even convex function and ${\mathcal {L}}{\varphi }$ be its Legendre transform. We prove the functional form of Mahler’s conjecture concerning the functional volume product $P(\varphi )=\int e^{-\varphi }\int e^{-{\mathcal {L}}\varphi }$ in dimension 2: we give the sharp lower bound of this quantity and characterize the equality case. The proof uses the computation of the derivative in $t$ of $P(t\varphi )$ and ideas due to Meyer [16] for unconditional convex bodies, adapted to the functional case by Fradelizi and Meyer [6] and extended for symmetric convex bodies in dimension 3 by Iriyeh and Shibata [11] (see also [4]). |
---|---|
ISSN: | 1073-7928 1687-0247 |
DOI: | 10.1093/imrn/rnac120 |