Betti Structures of Hypergeometric Equations

Abstract We study Betti structures in the solution complexes of confluent hypergeometric equations. We use the framework of enhanced ind-sheaves and the irregular Riemann–Hilbert correspondence of D’Agnolo–Kashiwara. The main result is a group theoretic criterion that ensures that enhanced solutions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International mathematics research notices 2023-06, Vol.2023 (12), p.10641-10701
Hauptverfasser: Barco, Davide, Hien, Marco, Hohl, Andreas, Sevenheck, Christian
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract We study Betti structures in the solution complexes of confluent hypergeometric equations. We use the framework of enhanced ind-sheaves and the irregular Riemann–Hilbert correspondence of D’Agnolo–Kashiwara. The main result is a group theoretic criterion that ensures that enhanced solutions of such systems are defined over certain subfields of $\mathds{ C}$. The proof uses a description of the hypergeometric systems as exponentially twisted Gauß–Manin systems of certain Laurent polynomials.
ISSN:1073-7928
1687-0247
DOI:10.1093/imrn/rnac095