Betti Structures of Hypergeometric Equations
Abstract We study Betti structures in the solution complexes of confluent hypergeometric equations. We use the framework of enhanced ind-sheaves and the irregular Riemann–Hilbert correspondence of D’Agnolo–Kashiwara. The main result is a group theoretic criterion that ensures that enhanced solutions...
Gespeichert in:
Veröffentlicht in: | International mathematics research notices 2023-06, Vol.2023 (12), p.10641-10701 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
We study Betti structures in the solution complexes of confluent hypergeometric equations. We use the framework of enhanced ind-sheaves and the irregular Riemann–Hilbert correspondence of D’Agnolo–Kashiwara. The main result is a group theoretic criterion that ensures that enhanced solutions of such systems are defined over certain subfields of $\mathds{ C}$. The proof uses a description of the hypergeometric systems as exponentially twisted Gauß–Manin systems of certain Laurent polynomials. |
---|---|
ISSN: | 1073-7928 1687-0247 |
DOI: | 10.1093/imrn/rnac095 |