Deformed Cartan Matrices and Generalized Preprojective Algebras I: Finite Type

Abstract We give an interpretation of the $(q,t)$-deformed Cartan matrices of finite type and their inverses in terms of bigraded modules over the generalized preprojective algebras of Langlands dual type in the sense of Geiß–Leclerc–Schröer [33]. As an application, we compute the first extension gr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International mathematics research notices 2023-04, Vol.2023 (8), p.6924-6975
Hauptverfasser: Fujita, Ryo, Murakami, Kota
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract We give an interpretation of the $(q,t)$-deformed Cartan matrices of finite type and their inverses in terms of bigraded modules over the generalized preprojective algebras of Langlands dual type in the sense of Geiß–Leclerc–Schröer [33]. As an application, we compute the first extension groups between the generic kernels introduced by Hernandez–Leclerc [40] and propose a conjecture that their dimensions coincide with the pole orders of the normalized $R$-matrices between the corresponding Kirillov–Reshetikhin modules.
ISSN:1073-7928
1687-0247
DOI:10.1093/imrn/rnac054