Deformed Cartan Matrices and Generalized Preprojective Algebras I: Finite Type
Abstract We give an interpretation of the $(q,t)$-deformed Cartan matrices of finite type and their inverses in terms of bigraded modules over the generalized preprojective algebras of Langlands dual type in the sense of Geiß–Leclerc–Schröer [33]. As an application, we compute the first extension gr...
Gespeichert in:
Veröffentlicht in: | International mathematics research notices 2023-04, Vol.2023 (8), p.6924-6975 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
We give an interpretation of the $(q,t)$-deformed Cartan matrices of finite type and their inverses in terms of bigraded modules over the generalized preprojective algebras of Langlands dual type in the sense of Geiß–Leclerc–Schröer [33]. As an application, we compute the first extension groups between the generic kernels introduced by Hernandez–Leclerc [40] and propose a conjecture that their dimensions coincide with the pole orders of the normalized $R$-matrices between the corresponding Kirillov–Reshetikhin modules. |
---|---|
ISSN: | 1073-7928 1687-0247 |
DOI: | 10.1093/imrn/rnac054 |