Fractional Leibniz Rules Associated to Bilinear Hermite Pseudo-Multipliers

Abstract We obtain a fractional Leibniz rule associated to bilinear Hermite pseudo-multipliers in the context of Hermite Besov and Hermite Triebel–Lizorkin spaces. As a byproduct, we show that the classes of bounded functions in these spaces (which include Hermite Sobolev and Hermite Hardy–Sobolev s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International mathematics research notices 2023-03, Vol.2023 (7), p.5401-5437
Hauptverfasser: Ly, Fu Ken, Naibo, Virginia
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract We obtain a fractional Leibniz rule associated to bilinear Hermite pseudo-multipliers in the context of Hermite Besov and Hermite Triebel–Lizorkin spaces. As a byproduct, we show that the classes of bounded functions in these spaces (which include Hermite Sobolev and Hermite Hardy–Sobolev spaces) are algebras under pointwise multiplication. To obtain these results we develop appropriate decompositions for bilinear pseudo-multipliers and molecular estimates for certain families of functions in the Hermite setting.
ISSN:1073-7928
1687-0247
DOI:10.1093/imrn/rnac020