A Derived Gabriel–Popescu Theorem for t-Structures via Derived Injectives
Abstract We prove a derived version of the Gabriel–Popescu theorem in the framework of dg-categories and t-structures. This exhibits any pretriangulated dg-category with a suitable t-structure (such that its heart is a Grothendieck abelian category) as a t-exact localization of a derived dg-category...
Gespeichert in:
Veröffentlicht in: | International mathematics research notices 2023-03, Vol.2023 (6), p.4695-4760 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
We prove a derived version of the Gabriel–Popescu theorem in the framework of dg-categories and t-structures. This exhibits any pretriangulated dg-category with a suitable t-structure (such that its heart is a Grothendieck abelian category) as a t-exact localization of a derived dg-category of dg-modules. We give an original proof based on a generalization of Mitchell’s argument in A quick proof of the Gabriel-Popesco theorem that involves derived injective objects. As an application, we provide a short proof of the fact that derived categories of Grothendieck abelian categories have a unique dg-enhancement. |
---|---|
ISSN: | 1073-7928 1687-0247 |
DOI: | 10.1093/imrn/rnab367 |