A Derived Gabriel–Popescu Theorem for t-Structures via Derived Injectives

Abstract We prove a derived version of the Gabriel–Popescu theorem in the framework of dg-categories and t-structures. This exhibits any pretriangulated dg-category with a suitable t-structure (such that its heart is a Grothendieck abelian category) as a t-exact localization of a derived dg-category...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International mathematics research notices 2023-03, Vol.2023 (6), p.4695-4760
Hauptverfasser: Genovese, Francesco, Ramos González, Julia
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract We prove a derived version of the Gabriel–Popescu theorem in the framework of dg-categories and t-structures. This exhibits any pretriangulated dg-category with a suitable t-structure (such that its heart is a Grothendieck abelian category) as a t-exact localization of a derived dg-category of dg-modules. We give an original proof based on a generalization of Mitchell’s argument in A quick proof of the Gabriel-Popesco theorem that involves derived injective objects. As an application, we provide a short proof of the fact that derived categories of Grothendieck abelian categories have a unique dg-enhancement.
ISSN:1073-7928
1687-0247
DOI:10.1093/imrn/rnab367