Push–Pull Operators on Convex Polytopes
A classical result of Schubert calculus is an inductive description of Schubert cycles using divided difference (or push–pull) operators in Chow rings. We define convex geometric analogs of push–pull operators and describe their applications to the theory of Newton–Okounkov convex bodies. Convex geo...
Gespeichert in:
Veröffentlicht in: | International mathematics research notices 2023-02, Vol.2023 (4), p.3305-3328 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A classical result of Schubert calculus is an inductive description of Schubert cycles using divided difference (or push–pull) operators in Chow rings. We define convex geometric analogs of push–pull operators and describe their applications to the theory of Newton–Okounkov convex bodies. Convex geometric push–pull operators yield an inductive construction of Newton–Okounkov polytopes of Bott–Samelson varieties. In particular, we construct a Minkowski sum of Feigin–Fourier–Littelmann–Vinberg polytopes using convex geometric push–pull operators in type $A$. |
---|---|
ISSN: | 1073-7928 1687-0247 |
DOI: | 10.1093/imrn/rnab331 |