Quantitative Hilbert Irreducibility and Almost Prime Values of Polynomial Discriminants

We study two polynomial counting questions in arithmetic statistics via a combination of Fourier analytic and arithmetic methods. First, we obtain new quantitative forms of Hilbert’s Irreducibility Theorem for degree $n$ polynomials $f$ with $\textrm {Gal}(f) \subseteq A_n$. We study this both for m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International mathematics research notices 2023-02, Vol.2023 (3), p.2188-2214
Hauptverfasser: Anderson, Theresa C, Gafni, Ayla, Lemke Oliver, Robert J, Lowry-Duda, David, Shakan, George, Zhang, Ruixiang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study two polynomial counting questions in arithmetic statistics via a combination of Fourier analytic and arithmetic methods. First, we obtain new quantitative forms of Hilbert’s Irreducibility Theorem for degree $n$ polynomials $f$ with $\textrm {Gal}(f) \subseteq A_n$. We study this both for monic polynomials and non-monic polynomials. Second, we study lower bounds on the number of degree $n$ monic polynomials with almost prime discriminants, as well as the closely related problem of lower bounds on the number of degree $n$ number fields with almost prime discriminants.
ISSN:1073-7928
1687-0247
DOI:10.1093/imrn/rnab296