An L 4 Maximal Estimate for Quadratic Weyl Sums
We show that $ \bigg \|\sup _{0 < t < 1} \big |\sum _{n=1}^{N} e^{2\pi i (n(\cdot ) + n^2 t)}\big | \bigg \|_{L^{4}([0,1])} \leq C_{\epsilon } N^{3/4 + \epsilon } $ and discuss some applications to the theory of large values of Weyl sums. This estimate is sharp for quadratic Weyl sums, up to t...
Gespeichert in:
Veröffentlicht in: | International mathematics research notices 2022-11, Vol.2022 (22), p.17305-17332 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that $ \bigg \|\sup _{0 < t < 1} \big |\sum _{n=1}^{N} e^{2\pi i (n(\cdot ) + n^2 t)}\big | \bigg \|_{L^{4}([0,1])} \leq C_{\epsilon } N^{3/4 + \epsilon } $ and discuss some applications to the theory of large values of Weyl sums. This estimate is sharp for quadratic Weyl sums, up to the loss of $N^{\epsilon }$. |
---|---|
ISSN: | 1073-7928 1687-0247 |
DOI: | 10.1093/imrn/rnab182 |