Parameter Spaces of Locally Constant Cocycles

Abstract This article concerns the locus of locally constant $\textrm{SL}(2,\mathbb{R})$-valued cocycles that have a dominated splitting, called the hyperbolic locus. By developing the theory of Möbius semigroups we show that cocycles on the boundary of the hyperbolic locus, apart from a few excepti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International mathematics research notices 2022-08, Vol.2022 (17), p.13590-13628
1. Verfasser: Christodoulou, Argyrios
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract This article concerns the locus of locally constant $\textrm{SL}(2,\mathbb{R})$-valued cocycles that have a dominated splitting, called the hyperbolic locus. By developing the theory of Möbius semigroups we show that cocycles on the boundary of the hyperbolic locus, apart from a few exceptions, exhibit some form of hyperbolic behaviour. This behaviour is used to answer a question posed by Avila, Bochi and Yoccoz. Our approach introduces a new locus of cocycles, closely related to the hyperbolic locus, and motivates a line of investigation on the subject.
ISSN:1073-7928
1687-0247
DOI:10.1093/imrn/rnab116