Unique Determination of Ellipsoids by Their Dual Volumes

Abstract Gusakova and Zaporozhets conjectured that ellipsoids in $\mathbb R^n$ are uniquely determined (up to an isometry) by their intrinsic volumes. Petrov and Tarasov confirmed this conjecture in $\mathbb R^3$. In this paper, we solve the dual problem in all dimensions. We show that any ellipsoid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International mathematics research notices 2022-08, Vol.2022 (17), p.13569-13589
Hauptverfasser: Myroshnychenko, Sergii, Tatarko, Kateryna, Yaskin, Vladyslav
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Gusakova and Zaporozhets conjectured that ellipsoids in $\mathbb R^n$ are uniquely determined (up to an isometry) by their intrinsic volumes. Petrov and Tarasov confirmed this conjecture in $\mathbb R^3$. In this paper, we solve the dual problem in all dimensions. We show that any ellipsoid in $\mathbb R^n$ centered at the origin is uniquely determined (up to an isometry) by an $n$-tuple of its dual volumes. As an application, we give an alternative proof of the result of Petrov and Tarasov.
ISSN:1073-7928
1687-0247
DOI:10.1093/imrn/rnab111