Existence of Equivariant Models of Spherical Varieties and Other G -varieties
Let $k_0$ be a field of characteristic $0$ with algebraic closure $k$. Let $G$ be a connected reductive $k$-group, and let $Y$ be a spherical variety over $k$ (a spherical homogeneous space or a spherical embedding). Let $G_0$ be a $k_0$-model ($k_0$-form) of $G$. We give necessary and sufficient co...
Gespeichert in:
Veröffentlicht in: | International mathematics research notices 2022-10, Vol.2022 (20), p.15932-16034 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $k_0$ be a field of characteristic $0$ with algebraic closure $k$. Let $G$ be a connected reductive $k$-group, and let $Y$ be a spherical variety over $k$ (a spherical homogeneous space or a spherical embedding). Let $G_0$ be a $k_0$-model ($k_0$-form) of $G$. We give necessary and sufficient conditions for the existence of a $G_0$-equivariant $k_0$-model of $Y$. |
---|---|
ISSN: | 1073-7928 1687-0247 |
DOI: | 10.1093/imrn/rnab102 |