Existence of Equivariant Models of Spherical Varieties and Other G -varieties

Let $k_0$ be a field of characteristic $0$ with algebraic closure $k$. Let $G$ be a connected reductive $k$-group, and let $Y$ be a spherical variety over $k$ (a spherical homogeneous space or a spherical embedding). Let $G_0$ be a $k_0$-model ($k_0$-form) of $G$. We give necessary and sufficient co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International mathematics research notices 2022-10, Vol.2022 (20), p.15932-16034
Hauptverfasser: Borovoi, Mikhail, Gagliardi, Giuliano
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $k_0$ be a field of characteristic $0$ with algebraic closure $k$. Let $G$ be a connected reductive $k$-group, and let $Y$ be a spherical variety over $k$ (a spherical homogeneous space or a spherical embedding). Let $G_0$ be a $k_0$-model ($k_0$-form) of $G$. We give necessary and sufficient conditions for the existence of a $G_0$-equivariant $k_0$-model of $Y$.
ISSN:1073-7928
1687-0247
DOI:10.1093/imrn/rnab102