Non-acyclic SL2-representations of Twist Knots, -3-Dehn Surgeries, and L-functions
Abstract We study irreducible $\mathop{\textrm{SL}}\nolimits _2$-representations of twist knots. We first determine all non-acyclic $\mathop{\textrm{SL}}\nolimits _2({\mathbb{C}})$-representations, which turn out to lie on a line denoted as $x=y$ in ${\mathbb{R}}^2$. Our main tools are character var...
Gespeichert in:
Veröffentlicht in: | International mathematics research notices 2022-07, Vol.2022 (15), p.11690-11731 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
We study irreducible $\mathop{\textrm{SL}}\nolimits _2$-representations of twist knots. We first determine all non-acyclic $\mathop{\textrm{SL}}\nolimits _2({\mathbb{C}})$-representations, which turn out to lie on a line denoted as $x=y$ in ${\mathbb{R}}^2$. Our main tools are character variety, Reidemeister torsion, and Chebyshev polynomials. We also verify a certain common tangent property, which yields a result on $L$-functions, that is, the orders of the knot modules associated to the universal deformations. Secondly, we prove that a representation is on the line $x=y$ if and only if it factors through the $-3$-Dehn surgery, and is non-acyclic if and only if the image of a certain element is of order 3. Finally, we study absolutely irreducible non-acyclic representations $\overline{\rho }$ over a finite field with characteristic $p>2$, to concretely determine all non-trivial $L$-functions $L_{{\boldsymbol{\rho }}}$ of the universal deformations over complete discrete valuation rings. We show among other things that $L_{{\boldsymbol{\rho }}}$ $\dot{=}$ $k_n(x)^2$ holds for a certain series $k_n(x)$ of polynomials. |
---|---|
ISSN: | 1073-7928 1687-0247 |
DOI: | 10.1093/imrn/rnab034 |