From Deformation Theory of Wheeled Props to Classification of Kontsevich Formality Maps

Abstract We study the homotopy theory of the wheeled prop controlling Poisson structures on formal graded finite-dimensional manifolds and prove, in particular, that the Grothendieck–Teichmüller group acts on that wheeled prop faithfully and homotopy nontrivially. Next, we apply this homotopy theory...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International mathematics research notices 2022-06, Vol.2022 (12), p.9275-9307
Hauptverfasser: Andersson, Assar, Merkulov, Sergei
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract We study the homotopy theory of the wheeled prop controlling Poisson structures on formal graded finite-dimensional manifolds and prove, in particular, that the Grothendieck–Teichmüller group acts on that wheeled prop faithfully and homotopy nontrivially. Next, we apply this homotopy theory to the study of the deformation complex of an arbitrary Kontsevich formality map and compute the full cohomology group of that deformation complex in terms of the cohomology of a certain graph complex introduced earlier by Kontsevich [ 3] and studied by Willwacher [ 18].
ISSN:1073-7928
1687-0247
DOI:10.1093/imrn/rnab012