From Deformation Theory of Wheeled Props to Classification of Kontsevich Formality Maps
Abstract We study the homotopy theory of the wheeled prop controlling Poisson structures on formal graded finite-dimensional manifolds and prove, in particular, that the Grothendieck–Teichmüller group acts on that wheeled prop faithfully and homotopy nontrivially. Next, we apply this homotopy theory...
Gespeichert in:
Veröffentlicht in: | International mathematics research notices 2022-06, Vol.2022 (12), p.9275-9307 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
We study the homotopy theory of the wheeled prop controlling Poisson structures on formal graded finite-dimensional manifolds and prove, in particular, that the Grothendieck–Teichmüller group acts on that wheeled prop faithfully and homotopy nontrivially. Next, we apply this homotopy theory to the study of the deformation complex of an arbitrary Kontsevich formality map and compute the full cohomology group of that deformation complex in terms of the cohomology of a certain graph complex introduced earlier by Kontsevich [
3] and studied by Willwacher [
18]. |
---|---|
ISSN: | 1073-7928 1687-0247 |
DOI: | 10.1093/imrn/rnab012 |