Twisting of affine algebraic groups, II
We use [11] to study the algebra structure of twisted cotriangular Hopf algebras _J\mathcal{O}(G)_{J}$, where $J$ is a Hopf $2$-cocycle for a connected nilpotent algebraic group $G$ over $\mathbb{C}$. In particular, we show that _J\mathcal{O}(G)_{J}$ is an affine Noetherian domain with Gelfand–Kiril...
Gespeichert in:
Veröffentlicht in: | International mathematics research notices 2022-06, Vol.2022 (11), p.8508-8539 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We use [11] to study the algebra structure of twisted cotriangular Hopf algebras _J\mathcal{O}(G)_{J}$, where $J$ is a Hopf $2$-cocycle for a connected nilpotent algebraic group $G$ over $\mathbb{C}$. In particular, we show that _J\mathcal{O}(G)_{J}$ is an affine Noetherian domain with Gelfand–Kirillov dimension $\dim (G)$, and that if $G$ is unipotent and $J$ is supported on $G$, then _J\mathcal{O}(G)_{J}\cong U({\mathfrak{g}})$ as algebras, where ${\mathfrak{g}}={\textrm{Lie}}(G)$. We also determine the finite dimensional irreducible representations of _J\mathcal{O}(G)_{J}$, by analyzing twisted function algebras on $(H,H)$-double cosets of the support $H\subset G$ of $J$. Finally, we work out several examples to illustrate our results. |
---|---|
ISSN: | 1073-7928 1687-0247 |
DOI: | 10.1093/imrn/rnaa381 |