On Spectral Properties of Compact Toeplitz Operators on Bergman Space with Logarithmically Decaying Symbol and Applications to Banded Matrices
Abstract Let $L^2({{\mathbb{D}}})$ be the space of measurable square-summable functions on the unit disk. Let $L^2_a({{\mathbb{D}}})$ be the Bergman space, that is, the (closed) subspace of analytic functions in $L^2({{\mathbb{D}}})$. $P_+$ stays for the orthogonal projection going from $L^2({{\math...
Gespeichert in:
Veröffentlicht in: | International mathematics research notices 2022-06, Vol.2022 (13), p.10249-10278 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10278 |
---|---|
container_issue | 13 |
container_start_page | 10249 |
container_title | International mathematics research notices |
container_volume | 2022 |
creator | Koïta, Mahamet Kupin, Stanislas Naboko, Sergey Touré, Belco |
description | Abstract
Let $L^2({{\mathbb{D}}})$ be the space of measurable square-summable functions on the unit disk. Let $L^2_a({{\mathbb{D}}})$ be the Bergman space, that is, the (closed) subspace of analytic functions in $L^2({{\mathbb{D}}})$. $P_+$ stays for the orthogonal projection going from $L^2({{\mathbb{D}}})$ to $L^2_a({{\mathbb{D}}})$. For a function $\varphi \in L^\infty ({{\mathbb{D}}})$, the Toeplitz operator $T_\varphi : L^2_a({{\mathbb{D}}})\to L^2_a({{\mathbb{D}}})$ is defined as $$\begin{align*} & T_\varphi f=P_+\varphi f, \quad f\in L^2_a({{\mathbb{D}}}). \end{align*}$$The main result of this article are spectral asymptotics for singular (or eigen-) values of compact Toeplitz operators with logarithmically decaying symbols, that is, $$\begin{align*} & \varphi(z)=\varphi_1(e^{i\theta})\, (1+\log(1/(1-r)))^{-\gamma},\quad \gamma>0, \end{align*}$$where $z=re^{i\theta }$ and $\varphi _1$ is a continuous (or piece-wise continuous) function on the unit circle. The result is applied to the spectral analysis of banded (including Jacobi) matrices. |
doi_str_mv | 10.1093/imrn/rnaa328 |
format | Article |
fullrecord | <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_imrn_rnaa328</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/imrn/rnaa328</oup_id><sourcerecordid>10.1093/imrn/rnaa328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c224t-b303869c2150cad8bfbad984ce4e14b87c3f2f7482e7859ade562c0dac0f289b3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqWw4wNmx4ZQx04bZ9mWp1RUpJZ1NHEmxSiJI9sIhY_gm0nVrlnN1dzH4jB2HfO7mGdyYhrXTlyLKIU6YaN4ptKIiyQ9HTRPZZRmQp2zC-8_ORc8VnLEftctbDrSwWENb8525IIhD7aCpW061AG2lrrahB9YDyYG6wa3hQW5XYP7MmqCbxM-YGV36AbRGI113cM9aexNu4NN3xS2BmxLmHfDlsZgbOshWFgMTyrhFYMzmvwlO6uw9nR1vGP2_viwXT5Hq_XTy3K-irQQSYgKyaWaZVrEU66xVEVVYJmpRFNCcVKoVMtKVGmiBKVqmmFJ05nQvETNK6GyQo7Z7WFXO-u9oyrvnGnQ9XnM8z3LfM8yP7Ic4jeHuP3q_k_-ATM-emY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On Spectral Properties of Compact Toeplitz Operators on Bergman Space with Logarithmically Decaying Symbol and Applications to Banded Matrices</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Koïta, Mahamet ; Kupin, Stanislas ; Naboko, Sergey ; Touré, Belco</creator><creatorcontrib>Koïta, Mahamet ; Kupin, Stanislas ; Naboko, Sergey ; Touré, Belco</creatorcontrib><description>Abstract
Let $L^2({{\mathbb{D}}})$ be the space of measurable square-summable functions on the unit disk. Let $L^2_a({{\mathbb{D}}})$ be the Bergman space, that is, the (closed) subspace of analytic functions in $L^2({{\mathbb{D}}})$. $P_+$ stays for the orthogonal projection going from $L^2({{\mathbb{D}}})$ to $L^2_a({{\mathbb{D}}})$. For a function $\varphi \in L^\infty ({{\mathbb{D}}})$, the Toeplitz operator $T_\varphi : L^2_a({{\mathbb{D}}})\to L^2_a({{\mathbb{D}}})$ is defined as $$\begin{align*} & T_\varphi f=P_+\varphi f, \quad f\in L^2_a({{\mathbb{D}}}). \end{align*}$$The main result of this article are spectral asymptotics for singular (or eigen-) values of compact Toeplitz operators with logarithmically decaying symbols, that is, $$\begin{align*} & \varphi(z)=\varphi_1(e^{i\theta})\, (1+\log(1/(1-r)))^{-\gamma},\quad \gamma>0, \end{align*}$$where $z=re^{i\theta }$ and $\varphi _1$ is a continuous (or piece-wise continuous) function on the unit circle. The result is applied to the spectral analysis of banded (including Jacobi) matrices.</description><identifier>ISSN: 1073-7928</identifier><identifier>EISSN: 1687-0247</identifier><identifier>DOI: 10.1093/imrn/rnaa328</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>International mathematics research notices, 2022-06, Vol.2022 (13), p.10249-10278</ispartof><rights>The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permission@oup.com. 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c224t-b303869c2150cad8bfbad984ce4e14b87c3f2f7482e7859ade562c0dac0f289b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1584,27924,27925</link.rule.ids></links><search><creatorcontrib>Koïta, Mahamet</creatorcontrib><creatorcontrib>Kupin, Stanislas</creatorcontrib><creatorcontrib>Naboko, Sergey</creatorcontrib><creatorcontrib>Touré, Belco</creatorcontrib><title>On Spectral Properties of Compact Toeplitz Operators on Bergman Space with Logarithmically Decaying Symbol and Applications to Banded Matrices</title><title>International mathematics research notices</title><description>Abstract
Let $L^2({{\mathbb{D}}})$ be the space of measurable square-summable functions on the unit disk. Let $L^2_a({{\mathbb{D}}})$ be the Bergman space, that is, the (closed) subspace of analytic functions in $L^2({{\mathbb{D}}})$. $P_+$ stays for the orthogonal projection going from $L^2({{\mathbb{D}}})$ to $L^2_a({{\mathbb{D}}})$. For a function $\varphi \in L^\infty ({{\mathbb{D}}})$, the Toeplitz operator $T_\varphi : L^2_a({{\mathbb{D}}})\to L^2_a({{\mathbb{D}}})$ is defined as $$\begin{align*} & T_\varphi f=P_+\varphi f, \quad f\in L^2_a({{\mathbb{D}}}). \end{align*}$$The main result of this article are spectral asymptotics for singular (or eigen-) values of compact Toeplitz operators with logarithmically decaying symbols, that is, $$\begin{align*} & \varphi(z)=\varphi_1(e^{i\theta})\, (1+\log(1/(1-r)))^{-\gamma},\quad \gamma>0, \end{align*}$$where $z=re^{i\theta }$ and $\varphi _1$ is a continuous (or piece-wise continuous) function on the unit circle. The result is applied to the spectral analysis of banded (including Jacobi) matrices.</description><issn>1073-7928</issn><issn>1687-0247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqWw4wNmx4ZQx04bZ9mWp1RUpJZ1NHEmxSiJI9sIhY_gm0nVrlnN1dzH4jB2HfO7mGdyYhrXTlyLKIU6YaN4ptKIiyQ9HTRPZZRmQp2zC-8_ORc8VnLEftctbDrSwWENb8525IIhD7aCpW061AG2lrrahB9YDyYG6wa3hQW5XYP7MmqCbxM-YGV36AbRGI113cM9aexNu4NN3xS2BmxLmHfDlsZgbOshWFgMTyrhFYMzmvwlO6uw9nR1vGP2_viwXT5Hq_XTy3K-irQQSYgKyaWaZVrEU66xVEVVYJmpRFNCcVKoVMtKVGmiBKVqmmFJ05nQvETNK6GyQo7Z7WFXO-u9oyrvnGnQ9XnM8z3LfM8yP7Ic4jeHuP3q_k_-ATM-emY</recordid><startdate>20220628</startdate><enddate>20220628</enddate><creator>Koïta, Mahamet</creator><creator>Kupin, Stanislas</creator><creator>Naboko, Sergey</creator><creator>Touré, Belco</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220628</creationdate><title>On Spectral Properties of Compact Toeplitz Operators on Bergman Space with Logarithmically Decaying Symbol and Applications to Banded Matrices</title><author>Koïta, Mahamet ; Kupin, Stanislas ; Naboko, Sergey ; Touré, Belco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c224t-b303869c2150cad8bfbad984ce4e14b87c3f2f7482e7859ade562c0dac0f289b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koïta, Mahamet</creatorcontrib><creatorcontrib>Kupin, Stanislas</creatorcontrib><creatorcontrib>Naboko, Sergey</creatorcontrib><creatorcontrib>Touré, Belco</creatorcontrib><collection>CrossRef</collection><jtitle>International mathematics research notices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koïta, Mahamet</au><au>Kupin, Stanislas</au><au>Naboko, Sergey</au><au>Touré, Belco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Spectral Properties of Compact Toeplitz Operators on Bergman Space with Logarithmically Decaying Symbol and Applications to Banded Matrices</atitle><jtitle>International mathematics research notices</jtitle><date>2022-06-28</date><risdate>2022</risdate><volume>2022</volume><issue>13</issue><spage>10249</spage><epage>10278</epage><pages>10249-10278</pages><issn>1073-7928</issn><eissn>1687-0247</eissn><abstract>Abstract
Let $L^2({{\mathbb{D}}})$ be the space of measurable square-summable functions on the unit disk. Let $L^2_a({{\mathbb{D}}})$ be the Bergman space, that is, the (closed) subspace of analytic functions in $L^2({{\mathbb{D}}})$. $P_+$ stays for the orthogonal projection going from $L^2({{\mathbb{D}}})$ to $L^2_a({{\mathbb{D}}})$. For a function $\varphi \in L^\infty ({{\mathbb{D}}})$, the Toeplitz operator $T_\varphi : L^2_a({{\mathbb{D}}})\to L^2_a({{\mathbb{D}}})$ is defined as $$\begin{align*} & T_\varphi f=P_+\varphi f, \quad f\in L^2_a({{\mathbb{D}}}). \end{align*}$$The main result of this article are spectral asymptotics for singular (or eigen-) values of compact Toeplitz operators with logarithmically decaying symbols, that is, $$\begin{align*} & \varphi(z)=\varphi_1(e^{i\theta})\, (1+\log(1/(1-r)))^{-\gamma},\quad \gamma>0, \end{align*}$$where $z=re^{i\theta }$ and $\varphi _1$ is a continuous (or piece-wise continuous) function on the unit circle. The result is applied to the spectral analysis of banded (including Jacobi) matrices.</abstract><pub>Oxford University Press</pub><doi>10.1093/imrn/rnaa328</doi><tpages>30</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-7928 |
ispartof | International mathematics research notices, 2022-06, Vol.2022 (13), p.10249-10278 |
issn | 1073-7928 1687-0247 |
language | eng |
recordid | cdi_crossref_primary_10_1093_imrn_rnaa328 |
source | Oxford University Press Journals All Titles (1996-Current) |
title | On Spectral Properties of Compact Toeplitz Operators on Bergman Space with Logarithmically Decaying Symbol and Applications to Banded Matrices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A19%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Spectral%20Properties%20of%20Compact%20Toeplitz%20Operators%20on%20Bergman%20Space%20with%20Logarithmically%20Decaying%20Symbol%20and%20Applications%20to%20Banded%20Matrices&rft.jtitle=International%20mathematics%20research%20notices&rft.au=Ko%C3%AFta,%20Mahamet&rft.date=2022-06-28&rft.volume=2022&rft.issue=13&rft.spage=10249&rft.epage=10278&rft.pages=10249-10278&rft.issn=1073-7928&rft.eissn=1687-0247&rft_id=info:doi/10.1093/imrn/rnaa328&rft_dat=%3Coup_cross%3E10.1093/imrn/rnaa328%3C/oup_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/imrn/rnaa328&rfr_iscdi=true |