On Spectral Properties of Compact Toeplitz Operators on Bergman Space with Logarithmically Decaying Symbol and Applications to Banded Matrices

Abstract Let $L^2({{\mathbb{D}}})$ be the space of measurable square-summable functions on the unit disk. Let $L^2_a({{\mathbb{D}}})$ be the Bergman space, that is, the (closed) subspace of analytic functions in $L^2({{\mathbb{D}}})$. $P_+$ stays for the orthogonal projection going from $L^2({{\math...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International mathematics research notices 2022-06, Vol.2022 (13), p.10249-10278
Hauptverfasser: Koïta, Mahamet, Kupin, Stanislas, Naboko, Sergey, Touré, Belco
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Let $L^2({{\mathbb{D}}})$ be the space of measurable square-summable functions on the unit disk. Let $L^2_a({{\mathbb{D}}})$ be the Bergman space, that is, the (closed) subspace of analytic functions in $L^2({{\mathbb{D}}})$. $P_+$ stays for the orthogonal projection going from $L^2({{\mathbb{D}}})$ to $L^2_a({{\mathbb{D}}})$. For a function $\varphi \in L^\infty ({{\mathbb{D}}})$, the Toeplitz operator $T_\varphi : L^2_a({{\mathbb{D}}})\to L^2_a({{\mathbb{D}}})$ is defined as $$\begin{align*} & T_\varphi f=P_+\varphi f, \quad f\in L^2_a({{\mathbb{D}}}). \end{align*}$$The main result of this article are spectral asymptotics for singular (or eigen-) values of compact Toeplitz operators with logarithmically decaying symbols, that is, $$\begin{align*} & \varphi(z)=\varphi_1(e^{i\theta})\, (1+\log(1/(1-r)))^{-\gamma},\quad \gamma>0, \end{align*}$$where $z=re^{i\theta }$ and $\varphi _1$ is a continuous (or piece-wise continuous) function on the unit circle. The result is applied to the spectral analysis of banded (including Jacobi) matrices.
ISSN:1073-7928
1687-0247
DOI:10.1093/imrn/rnaa328