Continuity of Weighted Operators, Muckenhoupt A p Weights, and Steklov Problem for Orthogonal Polynomials
We consider weighted operators acting on $L^p({\mathbb{R}}^d)$ and show that they depend continuously on the weight $w\in A_p({\mathbb{R}}^d)$ in the operator topology. Then, we use this result to estimate $L^p_w({\mathbb{T}})$ norm of polynomials orthogonal on the unit circle when the weight $w$ be...
Gespeichert in:
Veröffentlicht in: | International mathematics research notices 2022-04, Vol.2022 (8), p.5935-5972 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider weighted operators acting on $L^p({\mathbb{R}}^d)$ and show that they depend continuously on the weight $w\in A_p({\mathbb{R}}^d)$ in the operator topology. Then, we use this result to estimate $L^p_w({\mathbb{T}})$ norm of polynomials orthogonal on the unit circle when the weight $w$ belongs to Muckenhoupt class $A_2({\mathbb{T}})$ and $p>2$. The asymptotics of the polynomial entropy is obtained as an application. |
---|---|
ISSN: | 1073-7928 1687-0247 |
DOI: | 10.1093/imrn/rnaa249 |