Periodic Points and Topological Restriction Homology

Abstract We answer in the affirmative two conjectures made by Klein and Williams. First, in a range of dimensions, the equivariant Reidemeister trace defines a complete obstruction to removing $n$-periodic points from a self-map $f$. Second, this obstruction defines a class in topological restrictio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International mathematics research notices 2022-02, Vol.2022 (4), p.2401-2459
Hauptverfasser: Malkiewich, Cary, Ponto, Kate
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract We answer in the affirmative two conjectures made by Klein and Williams. First, in a range of dimensions, the equivariant Reidemeister trace defines a complete obstruction to removing $n$-periodic points from a self-map $f$. Second, this obstruction defines a class in topological restriction homology. We prove these results using duality and trace for bicategories. This allows for immediate generalizations, including a corresponding theorem for the fiberwise Reidemeister trace.
ISSN:1073-7928
1687-0247
DOI:10.1093/imrn/rnaa174