From Pseudo-Rotations to Holomorphic Curves via Quantum Steenrod Squares
In the context of symplectic dynamics, pseudo-rotations are Hamiltonian diffeomorphisms with finite and minimal possible number of periodic orbits. These maps are of interest in both dynamics and symplectic topology. We show that a closed, monotone symplectic manifold, which admits a nondegenerate p...
Gespeichert in:
Veröffentlicht in: | International mathematics research notices 2022-02, Vol.2022 (3), p.2274-2297 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2297 |
---|---|
container_issue | 3 |
container_start_page | 2274 |
container_title | International mathematics research notices |
container_volume | 2022 |
creator | Çineli, Erman Ginzburg, Viktor L Gürel, Başak Z |
description | In the context of symplectic dynamics, pseudo-rotations are Hamiltonian diffeomorphisms with finite and minimal possible number of periodic orbits. These maps are of interest in both dynamics and symplectic topology. We show that a closed, monotone symplectic manifold, which admits a nondegenerate pseudo-rotation, must have a deformed quantum Steenrod square of the top degree element and hence nontrivial holomorphic spheres. This result (partially) generalizes a recent work by Shelukhin and complements the results by the authors on nonvanishing Gromov–Witten invariants of manifolds admitting pseudo-rotations. |
doi_str_mv | 10.1093/imrn/rnaa173 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1093_imrn_rnaa173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1093_imrn_rnaa173</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1883-520415b2e70dc90df71d4a49a129cc972e4255d7ffc85592c82a138d71779a5d3</originalsourceid><addsrcrecordid>eNot0MtOwzAQhWELgUQp7HgAPwChHjtm7CWKKEGqxKWwjgbbEUFNXOykEm9PK7o6_-osPsauQdyCsGrR9WlYpIEIUJ2wGdwZLIQs8XTfAlWBVppzdpHztxBSgFEzVi9T7PlLDpOPxVscaezikPkYeR03sY9p-9U5Xk1pFzLfdcRfJxrGqefrMYQhRc_XPxOlkC_ZWUubHK6OO2cfy4f3qi5Wz49P1f2qcGCMKrQUJehPGVB4Z4VvEXxJpSWQ1jmLMpRSa49t64zWVjojCZTxCIiWtFdzdvP_61LMOYW22aaup_TbgGgOCs1BoTkqqD81F1IL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>From Pseudo-Rotations to Holomorphic Curves via Quantum Steenrod Squares</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Çineli, Erman ; Ginzburg, Viktor L ; Gürel, Başak Z</creator><creatorcontrib>Çineli, Erman ; Ginzburg, Viktor L ; Gürel, Başak Z</creatorcontrib><description>In the context of symplectic dynamics, pseudo-rotations are Hamiltonian diffeomorphisms with finite and minimal possible number of periodic orbits. These maps are of interest in both dynamics and symplectic topology. We show that a closed, monotone symplectic manifold, which admits a nondegenerate pseudo-rotation, must have a deformed quantum Steenrod square of the top degree element and hence nontrivial holomorphic spheres. This result (partially) generalizes a recent work by Shelukhin and complements the results by the authors on nonvanishing Gromov–Witten invariants of manifolds admitting pseudo-rotations.</description><identifier>ISSN: 1073-7928</identifier><identifier>EISSN: 1687-0247</identifier><identifier>DOI: 10.1093/imrn/rnaa173</identifier><language>eng</language><ispartof>International mathematics research notices, 2022-02, Vol.2022 (3), p.2274-2297</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1883-520415b2e70dc90df71d4a49a129cc972e4255d7ffc85592c82a138d71779a5d3</citedby><cites>FETCH-LOGICAL-c1883-520415b2e70dc90df71d4a49a129cc972e4255d7ffc85592c82a138d71779a5d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Çineli, Erman</creatorcontrib><creatorcontrib>Ginzburg, Viktor L</creatorcontrib><creatorcontrib>Gürel, Başak Z</creatorcontrib><title>From Pseudo-Rotations to Holomorphic Curves via Quantum Steenrod Squares</title><title>International mathematics research notices</title><description>In the context of symplectic dynamics, pseudo-rotations are Hamiltonian diffeomorphisms with finite and minimal possible number of periodic orbits. These maps are of interest in both dynamics and symplectic topology. We show that a closed, monotone symplectic manifold, which admits a nondegenerate pseudo-rotation, must have a deformed quantum Steenrod square of the top degree element and hence nontrivial holomorphic spheres. This result (partially) generalizes a recent work by Shelukhin and complements the results by the authors on nonvanishing Gromov–Witten invariants of manifolds admitting pseudo-rotations.</description><issn>1073-7928</issn><issn>1687-0247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNot0MtOwzAQhWELgUQp7HgAPwChHjtm7CWKKEGqxKWwjgbbEUFNXOykEm9PK7o6_-osPsauQdyCsGrR9WlYpIEIUJ2wGdwZLIQs8XTfAlWBVppzdpHztxBSgFEzVi9T7PlLDpOPxVscaezikPkYeR03sY9p-9U5Xk1pFzLfdcRfJxrGqefrMYQhRc_XPxOlkC_ZWUubHK6OO2cfy4f3qi5Wz49P1f2qcGCMKrQUJehPGVB4Z4VvEXxJpSWQ1jmLMpRSa49t64zWVjojCZTxCIiWtFdzdvP_61LMOYW22aaup_TbgGgOCs1BoTkqqD81F1IL</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Çineli, Erman</creator><creator>Ginzburg, Viktor L</creator><creator>Gürel, Başak Z</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220201</creationdate><title>From Pseudo-Rotations to Holomorphic Curves via Quantum Steenrod Squares</title><author>Çineli, Erman ; Ginzburg, Viktor L ; Gürel, Başak Z</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1883-520415b2e70dc90df71d4a49a129cc972e4255d7ffc85592c82a138d71779a5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Çineli, Erman</creatorcontrib><creatorcontrib>Ginzburg, Viktor L</creatorcontrib><creatorcontrib>Gürel, Başak Z</creatorcontrib><collection>CrossRef</collection><jtitle>International mathematics research notices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Çineli, Erman</au><au>Ginzburg, Viktor L</au><au>Gürel, Başak Z</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From Pseudo-Rotations to Holomorphic Curves via Quantum Steenrod Squares</atitle><jtitle>International mathematics research notices</jtitle><date>2022-02-01</date><risdate>2022</risdate><volume>2022</volume><issue>3</issue><spage>2274</spage><epage>2297</epage><pages>2274-2297</pages><issn>1073-7928</issn><eissn>1687-0247</eissn><abstract>In the context of symplectic dynamics, pseudo-rotations are Hamiltonian diffeomorphisms with finite and minimal possible number of periodic orbits. These maps are of interest in both dynamics and symplectic topology. We show that a closed, monotone symplectic manifold, which admits a nondegenerate pseudo-rotation, must have a deformed quantum Steenrod square of the top degree element and hence nontrivial holomorphic spheres. This result (partially) generalizes a recent work by Shelukhin and complements the results by the authors on nonvanishing Gromov–Witten invariants of manifolds admitting pseudo-rotations.</abstract><doi>10.1093/imrn/rnaa173</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-7928 |
ispartof | International mathematics research notices, 2022-02, Vol.2022 (3), p.2274-2297 |
issn | 1073-7928 1687-0247 |
language | eng |
recordid | cdi_crossref_primary_10_1093_imrn_rnaa173 |
source | Oxford University Press Journals All Titles (1996-Current) |
title | From Pseudo-Rotations to Holomorphic Curves via Quantum Steenrod Squares |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T18%3A53%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20Pseudo-Rotations%20to%20Holomorphic%20Curves%20via%20Quantum%20Steenrod%20Squares&rft.jtitle=International%20mathematics%20research%20notices&rft.au=%C3%87ineli,%20Erman&rft.date=2022-02-01&rft.volume=2022&rft.issue=3&rft.spage=2274&rft.epage=2297&rft.pages=2274-2297&rft.issn=1073-7928&rft.eissn=1687-0247&rft_id=info:doi/10.1093/imrn/rnaa173&rft_dat=%3Ccrossref%3E10_1093_imrn_rnaa173%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |