From Pseudo-Rotations to Holomorphic Curves via Quantum Steenrod Squares
In the context of symplectic dynamics, pseudo-rotations are Hamiltonian diffeomorphisms with finite and minimal possible number of periodic orbits. These maps are of interest in both dynamics and symplectic topology. We show that a closed, monotone symplectic manifold, which admits a nondegenerate p...
Gespeichert in:
Veröffentlicht in: | International mathematics research notices 2022-02, Vol.2022 (3), p.2274-2297 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the context of symplectic dynamics, pseudo-rotations are Hamiltonian diffeomorphisms with finite and minimal possible number of periodic orbits. These maps are of interest in both dynamics and symplectic topology. We show that a closed, monotone symplectic manifold, which admits a nondegenerate pseudo-rotation, must have a deformed quantum Steenrod square of the top degree element and hence nontrivial holomorphic spheres. This result (partially) generalizes a recent work by Shelukhin and complements the results by the authors on nonvanishing Gromov–Witten invariants of manifolds admitting pseudo-rotations. |
---|---|
ISSN: | 1073-7928 1687-0247 |
DOI: | 10.1093/imrn/rnaa173 |