From Pseudo-Rotations to Holomorphic Curves via Quantum Steenrod Squares

In the context of symplectic dynamics, pseudo-rotations are Hamiltonian diffeomorphisms with finite and minimal possible number of periodic orbits. These maps are of interest in both dynamics and symplectic topology. We show that a closed, monotone symplectic manifold, which admits a nondegenerate p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International mathematics research notices 2022-02, Vol.2022 (3), p.2274-2297
Hauptverfasser: Çineli, Erman, Ginzburg, Viktor L, Gürel, Başak Z
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the context of symplectic dynamics, pseudo-rotations are Hamiltonian diffeomorphisms with finite and minimal possible number of periodic orbits. These maps are of interest in both dynamics and symplectic topology. We show that a closed, monotone symplectic manifold, which admits a nondegenerate pseudo-rotation, must have a deformed quantum Steenrod square of the top degree element and hence nontrivial holomorphic spheres. This result (partially) generalizes a recent work by Shelukhin and complements the results by the authors on nonvanishing Gromov–Witten invariants of manifolds admitting pseudo-rotations.
ISSN:1073-7928
1687-0247
DOI:10.1093/imrn/rnaa173