On the standard Galerkin method with explicit RK4 time stepping for the shallow water equations

We consider a simple initial-boundary-value problem for the shallow water equations in one space dimension. We discretize the problem in space by the standard Galerkin finite element method on a quasiuniform mesh and in time by the classical four-stage, fourth order, explicit Runge–Kutta scheme. Ass...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IMA journal of numerical analysis 2020-10, Vol.40 (4), p.2415-2449
Hauptverfasser: Antonopoulos, D C, Dougalis, V A, Kounadis, G
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a simple initial-boundary-value problem for the shallow water equations in one space dimension. We discretize the problem in space by the standard Galerkin finite element method on a quasiuniform mesh and in time by the classical four-stage, fourth order, explicit Runge–Kutta scheme. Assuming smoothness of solutions, a Courant number restriction and certain hypotheses on the finite element spaces, we prove $L^{2}$ error estimates that are of fourth-order accuracy in the temporal variable and of the usual, due to the nonuniform mesh, suboptimal order in space. We also make a computational study of the numerical spatial and temporal orders of convergence, and of the validity of a hypothesis made on the finite element spaces.
ISSN:0272-4979
1464-3642
DOI:10.1093/imanum/drz033