On the standard Galerkin method with explicit RK4 time stepping for the shallow water equations
We consider a simple initial-boundary-value problem for the shallow water equations in one space dimension. We discretize the problem in space by the standard Galerkin finite element method on a quasiuniform mesh and in time by the classical four-stage, fourth order, explicit Runge–Kutta scheme. Ass...
Gespeichert in:
Veröffentlicht in: | IMA journal of numerical analysis 2020-10, Vol.40 (4), p.2415-2449 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider a simple initial-boundary-value problem for the shallow water equations in one space dimension. We discretize the problem in space by the standard Galerkin finite element method on a quasiuniform mesh and in time by the classical four-stage, fourth order, explicit Runge–Kutta scheme. Assuming smoothness of solutions, a Courant number restriction and certain hypotheses on the finite element spaces, we prove $L^{2}$ error estimates that are of fourth-order accuracy in the temporal variable and of the usual, due to the nonuniform mesh, suboptimal order in space. We also make a computational study of the numerical spatial and temporal orders of convergence, and of the validity of a hypothesis made on the finite element spaces. |
---|---|
ISSN: | 0272-4979 1464-3642 |
DOI: | 10.1093/imanum/drz033 |