Hierarchical B-spline complexes of discrete differential forms

In this paper we introduce the hierarchical B-spline complex of discrete differential forms for arbitrary spatial dimension. This complex may be applied to the adaptive isogeometric solution of problems arising in electromagnetics and fluid mechanics. We derive a sufficient and necessary condition g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IMA journal of numerical analysis 2020-01, Vol.40 (1), p.422-473
Hauptverfasser: Evans, John A, Scott, Michael A, Shepherd, Kendrick M, Thomas, Derek C, Vázquez Hernández, Rafael
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we introduce the hierarchical B-spline complex of discrete differential forms for arbitrary spatial dimension. This complex may be applied to the adaptive isogeometric solution of problems arising in electromagnetics and fluid mechanics. We derive a sufficient and necessary condition guaranteeing exactness of the hierarchical B-spline complex for arbitrary spatial dimension, and we derive a set of local, easy-to-compute and sufficient exactness conditions for the two-dimensional setting. We examine the stability properties of the hierarchical B-spline complex, and we find that it yields stable approximations of both the Maxwell eigenproblem and Stokes problem provided that the local exactness conditions are satisfied. We conclude by providing numerical results showing the promise of the hierarchical B-spline complex in an adaptive isogeometric solution framework.
ISSN:0272-4979
1464-3642
DOI:10.1093/imanum/dry077