A posteriori error estimates for the fractional-step -scheme for linear parabolic equations

We derive residual-based a posteriori error estimates of optimal order for time discretizations of linear parabolic equations by the fractional-step -scheme. We first consider the time semidiscrete problem. The main tool of our analysis is an appropriate reconstruction of the piecewise linear interp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IMA journal of numerical analysis 2012, Vol.32 (1), p.141-162
1. Verfasser: Karakatsani, Fotini
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We derive residual-based a posteriori error estimates of optimal order for time discretizations of linear parabolic equations by the fractional-step -scheme. We first consider the time semidiscrete problem. The main tool of our analysis is an appropriate reconstruction of the piecewise linear interpolant of the approximate solution that leads to a residual of optimal order. Next we extend the above-mentioned results to the case of a full discretization. The theoretical results are justified with numerical experiments.
ISSN:0272-4979
1464-3642
DOI:10.1093/imanum/drq033