A posteriori error estimates for the fractional-step -scheme for linear parabolic equations
We derive residual-based a posteriori error estimates of optimal order for time discretizations of linear parabolic equations by the fractional-step -scheme. We first consider the time semidiscrete problem. The main tool of our analysis is an appropriate reconstruction of the piecewise linear interp...
Gespeichert in:
Veröffentlicht in: | IMA journal of numerical analysis 2012, Vol.32 (1), p.141-162 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We derive residual-based a posteriori error estimates of optimal order for time discretizations of linear parabolic equations by the fractional-step -scheme. We first consider the time semidiscrete problem. The main tool of our analysis is an appropriate reconstruction of the piecewise linear interpolant of the approximate solution that leads to a residual of optimal order. Next we extend the above-mentioned results to the case of a full discretization. The theoretical results are justified with numerical experiments. |
---|---|
ISSN: | 0272-4979 1464-3642 |
DOI: | 10.1093/imanum/drq033 |