On the definition of curvature in Regge calculus

Regge calculus defines a curvature for piecewise constant metrics on simplicial complexes subject to a partial continuity requirement. We prove that if a part of the complex is embedded in a Euclidean space, by a piecewise affine map, and we perform smoothing by convolution there, then the smoothed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IMA journal of numerical analysis 2024-10, Vol.44 (5), p.2698-2715
1. Verfasser: Christiansen, Snorre H
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Regge calculus defines a curvature for piecewise constant metrics on simplicial complexes subject to a partial continuity requirement. We prove that if a part of the complex is embedded in a Euclidean space, by a piecewise affine map, and we perform smoothing by convolution there, then the smoothed metrics have a densitized scalar curvature that converges, in the sense of measures, to that defined by Regge, as the smoothing parameter goes to zero.
ISSN:0272-4979
1464-3642
DOI:10.1093/imanum/drad095