On the definition of curvature in Regge calculus
Regge calculus defines a curvature for piecewise constant metrics on simplicial complexes subject to a partial continuity requirement. We prove that if a part of the complex is embedded in a Euclidean space, by a piecewise affine map, and we perform smoothing by convolution there, then the smoothed...
Gespeichert in:
Veröffentlicht in: | IMA journal of numerical analysis 2024-10, Vol.44 (5), p.2698-2715 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Regge calculus defines a curvature for piecewise constant metrics on simplicial complexes subject to a partial continuity requirement. We prove that if a part of the complex is embedded in a Euclidean space, by a piecewise affine map, and we perform smoothing by convolution there, then the smoothed metrics have a densitized scalar curvature that converges, in the sense of measures, to that defined by Regge, as the smoothing parameter goes to zero. |
---|---|
ISSN: | 0272-4979 1464-3642 |
DOI: | 10.1093/imanum/drad095 |