A nested divide-and-conquer method for tensor Sylvester equations with positive definite hierarchically semiseparable coefficients

Linear systems with a tensor product structure arise naturally when considering the discretization of Laplace-type differential equations or, more generally, multidimensional operators with separable coefficients. In this work, we focus on the numerical solution of linear systems of the form $$ \beg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IMA journal of numerical analysis 2023-12
Hauptverfasser: Massei, Stefano, Robol, Leonardo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Linear systems with a tensor product structure arise naturally when considering the discretization of Laplace-type differential equations or, more generally, multidimensional operators with separable coefficients. In this work, we focus on the numerical solution of linear systems of the form $$ \begin{align*} & \left(I\otimes \dots\otimes I \otimes A_1+\dots + A_d\otimes I \otimes\dots \otimes I\right)x=b, \end{align*}$$where the matrices $A_{t}\in \mathbb R^{n\times n}$ are symmetric positive definite and belong to the class of hierarchically semiseparable matrices. We propose and analyze a nested divide-and-conquer scheme, based on the technology of low-rank updates, which attains the quasi-optimal computational cost $\mathcal {O}(n^{d}\log (n))$. Our theoretical analysis highlights the role of inexactness in the nested calls of our algorithm and provides worst case estimates for the amplification of the residual norm. The performances are validated on 2D and 3D case studies.
ISSN:0272-4979
1464-3642
DOI:10.1093/imanum/drad089