The Gaussian wave packet transform via quadrature rules

We analyse the Gaussian wave packet transform. Based on the Fourier inversion formula and a partition of unity, which is formed by a collection of Gaussian basis functions, a new representation of square-integrable functions is presented. Including a rigorous error analysis, the variants of the wave...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IMA journal of numerical analysis 2024-06, Vol.44 (3), p.1785-1820
Hauptverfasser: Bergold, Paul, Lasser, Caroline
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We analyse the Gaussian wave packet transform. Based on the Fourier inversion formula and a partition of unity, which is formed by a collection of Gaussian basis functions, a new representation of square-integrable functions is presented. Including a rigorous error analysis, the variants of the wave packet transform are then derived by a discretization of the Fourier integral via different quadrature rules. Based on Gauss–Hermite quadrature, we introduce a new representation of Gaussian wave packets in which the number of basis functions is significantly reduced. Numerical experiments in 1D illustrate the theoretical results.
ISSN:0272-4979
1464-3642
DOI:10.1093/imanum/drad049