An arbitrary-order discrete rot-rot complex on polygonal meshes with application to a quad-rot problem

In this work, following the discrete de Rham approach, we develop a discrete counterpart of a two-dimensional de Rham complex with enhanced regularity. The proposed construction supports general polygonal meshes and arbitrary approximation orders. We establish exactness on a contractible domain for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IMA journal of numerical analysis 2024-06, Vol.44 (3), p.1699-1730
1. Verfasser: Di Pietro, Daniele A
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, following the discrete de Rham approach, we develop a discrete counterpart of a two-dimensional de Rham complex with enhanced regularity. The proposed construction supports general polygonal meshes and arbitrary approximation orders. We establish exactness on a contractible domain for both the versions of the complex with and without boundary conditions and, for the former, prove a complete set of Poincaré-type inequalities. The discrete complex is then used to derive a novel discretization method for a quad-rot problem, which, unlike other schemes in the literature, does not require the forcing term to be prepared. We carry out complete stability and convergence analyses for the proposed scheme and provide numerical validation of the results.
ISSN:0272-4979
1464-3642
DOI:10.1093/imanum/drad045