Random points are optimal for the approximation of Sobolev functions

We show that independent and uniformly distributed sampling points are asymptotically as good as optimal sampling points for the approximation of functions from Sobolev spaces $W_p^s(\varOmega )$ on bounded convex domains $\varOmega \subset{\mathbb{R}}^d$ in the $L_q$-norm if $q

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IMA journal of numerical analysis 2024-06, Vol.44 (3), p.1346-1371
Hauptverfasser: Krieg, David, Sonnleitner, Mathias
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that independent and uniformly distributed sampling points are asymptotically as good as optimal sampling points for the approximation of functions from Sobolev spaces $W_p^s(\varOmega )$ on bounded convex domains $\varOmega \subset{\mathbb{R}}^d$ in the $L_q$-norm if $q
ISSN:0272-4979
1464-3642
DOI:10.1093/imanum/drad014