The Hodge Laplacian on axisymmetric domains and its discretization
We study the mixed formulation of the abstract Hodge Laplacian on axisymmetric domains with general data through Fourier finite element methods (Fourier-FEMs) in weighted function spaces. Closed Hilbert complexes and commuting projectors are used as in the work of Arnold, Falk & Winther, (2010,...
Gespeichert in:
Veröffentlicht in: | IMA journal of numerical analysis 2021-04, Vol.41 (2), p.1569-1607 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the mixed formulation of the abstract Hodge Laplacian on axisymmetric domains with general data through Fourier finite element methods (Fourier-FEMs) in weighted function spaces. Closed Hilbert complexes and commuting projectors are used as in the work of Arnold, Falk & Winther, (2010, Finite element exterior calculus: from Hodge theory to numerical stability. Bull. Amer. Math. Soc. (N.S.), 47, 281–354), by using the new family of finite element spaces for general axisymmetric problems introduced in Oh, (2015, de Rham complexes arising from Fourier-FEMs in axisymmetric domains. Comput. Math. Appl., 70, 2063–2073). In order to get stability results and error estimates for the discrete mixed formulation, we construct commuting projectors that can be applied to functions with low regularity. |
---|---|
ISSN: | 0272-4979 1464-3642 |
DOI: | 10.1093/imanum/draa048 |