On the complexity of an augmented Lagrangian method for nonconvex optimization
In this paper we study the worst-case complexity of an inexact augmented Lagrangian method for nonconvex constrained problems. Assuming that the penalty parameters are bounded we prove a complexity bound of $\mathcal{O}(|\log (\epsilon )|)$ outer iterations for the referred algorithm to generate an...
Gespeichert in:
Veröffentlicht in: | IMA journal of numerical analysis 2021-04, Vol.41 (2), p.1546-1568 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we study the worst-case complexity of an inexact augmented Lagrangian method for nonconvex constrained problems. Assuming that the penalty parameters are bounded we prove a complexity bound of $\mathcal{O}(|\log (\epsilon )|)$ outer iterations for the referred algorithm to generate an $\epsilon$-approximate KKT point for $\epsilon \in (0,1)$. When the penalty parameters are unbounded we prove an outer iteration complexity bound of $\mathcal{O}(\epsilon ^{-2/(\alpha -1)} )$, where $\alpha>1$ controls the rate of increase of the penalty parameters. For linearly constrained problems these bounds yield to evaluation complexity bounds of $\mathcal{O}(|\log (\epsilon )|^{2}\epsilon ^{-2})$ and $\mathcal{O}(\epsilon ^{- (\frac{2(2+\alpha )}{\alpha -1}+2 )})$, respectively, when appropriate first-order methods ($p=1$) are used to approximately solve the unconstrained subproblems at each iteration. In the case of problems having only linear equality constraints the latter bounds are improved to $\mathcal{O}(|\log (\epsilon )|^{2}\epsilon ^{-(p+1)/p})$ and $\mathcal{O}(\epsilon ^{-(\frac{4}{\alpha -1}+\frac{p+1}{p})})$, respectively, when appropriate $p$-order methods ($p\geq 2$) are used as inner solvers. |
---|---|
ISSN: | 0272-4979 1464-3642 |
DOI: | 10.1093/imanum/draa021 |