Error Estimates of Optimal Order for Finite Element Methods with Interpolated Coefficients for the Nonlinear Heat Equation

Error estimates are shown for some spatially discrete Galerkin finite element methods for a nonlinear heat equation. The numerical schemes studied are based on a classical transformation of the dependent variable by means of the enthalpy and the Kirchhoff transformation, and on numerical quadrature...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IMA journal of numerical analysis 1989-10, Vol.9 (4), p.507-524
Hauptverfasser: CHEN, CHUAN-MIAO, LARSSON, STIG, ZHANG, NAI-YING
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Error estimates are shown for some spatially discrete Galerkin finite element methods for a nonlinear heat equation. The numerical schemes studied are based on a classical transformation of the dependent variable by means of the enthalpy and the Kirchhoff transformation, and on numerical quadrature by means of interpolation of coefficients. The results depend on superconvergence in the gradient for a related elliptic problem, which is shown to hold in two cases: (i) piecewise linears on a piecewise uniform mesh in two dimensions; (ii) piecewise polynomials of any degree in one dimension with the nodes chosen as the Lobatto points.
ISSN:0272-4979
1464-3642
DOI:10.1093/imanum/9.4.507