An inverse data envelopment analysis model to consider ratio data and preferences of decision-makers

Abstract Inverse data envelopment analysis (DEA) determines the optimal level of inputs and/or outputs of decision-making units (DMUs) to reach efficiency targets. This paper presents a new inverse DEA model for determining minimum inputs for working capital management. The proposed model is employe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IMA journal of management mathematics 2023-06, Vol.34 (3), p.441-464
Hauptverfasser: Mahla, Deepak, Agarwal, Shivi, Amin, Gholam R, Mathur, Trilok
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Inverse data envelopment analysis (DEA) determines the optimal level of inputs and/or outputs of decision-making units (DMUs) to reach efficiency targets. This paper presents a new inverse DEA model for determining minimum inputs for working capital management. The proposed model is employed in the Indian textile industry to calculate working capital efficiency. Given the working capital efficiency, the decision maker’s preferences will be estimating the change in inputs when outputs increase. Furthermore, unlike the standard inverse DEA model, this article discusses the inverse DEA model when negative ratio data exist. The DEA model requires additional attention when ratio data are present; therefore, a novel inverse DEA ratio model is proposed. The input targets obtained from the proposed model are less than the standard inverse DEA model. Also, the proposed model is a closer estimate of the production probability set for ratio data.
ISSN:1471-678X
1471-6798
DOI:10.1093/imaman/dpac009