Impact of predicted climate change scenarios on a coral reef meiofauna community

Changes in marine communities in response to elevated CO2 have been reported but information on how representatives of the benthic lower trophic levels will be impacted remains scarce. A laboratory experiment was conducted to evaluate the impact of different climate change scenarios on a coral reef...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ICES journal of marine science 2017-05, Vol.74 (4), p.1170-1179
Hauptverfasser: Sarmento, Visnu Cunha, Pinheiro, Bárbara Ramos, Montes, Manuel de Jesus Flores, Santos, Paulo Jorge Parreira
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Changes in marine communities in response to elevated CO2 have been reported but information on how representatives of the benthic lower trophic levels will be impacted remains scarce. A laboratory experiment was conducted to evaluate the impact of different climate change scenarios on a coral reef meiofauna community. Samples of the meiofauna community were collected from the coral reef subtidal zone of Serrambi beach (Ipojuca, Pernambuco, Brazil), using artificial substrate units. The units were exposed to control treatments and to three climate change scenarios, and collected after 15 and 29 d. Important changes in the meiofauna community structure were observed after 15 d of exposure. The major meiofauna groups exhibited divergent responses to the various scenarios. Although polychaetes were negatively affected after 29 d in the most severe scenario (Scenario III), harpacticoid copepods were negatively affected in Scenarios II and III after 15 and 29 d. Harpacticoid nauplii were strongly and negatively affected in all scenarios. In contrast, Nematoda exhibited higher densities in all scenarios. To the best of our knowledge, this community-based study was the first to observe how meiofauna organisms from a coral reef environment react to the synergetic effects of reductions in seawater pH and increased temperature.
ISSN:1054-3139
1095-9289
DOI:10.1093/icesjms/fsw234