The dynamics and impact of compositionally originating provinces in a mantle convection model featuring rheologically obtained plates

Previous geodynamic studies have indicated that the presence of a compositionally anomalous and intrinsically dense (CAID) mantle component can impact both core heat flux and surface features, such as plate velocity, number and size. Implementing spherical annulus geometry mantle convection models,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical journal international 2020-03, Vol.220 (3), p.1700-1716
Hauptverfasser: Langemeyer, Sean M, Lowman, Julian P, Tackley, Paul J
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Previous geodynamic studies have indicated that the presence of a compositionally anomalous and intrinsically dense (CAID) mantle component can impact both core heat flux and surface features, such as plate velocity, number and size. Implementing spherical annulus geometry mantle convection models, we investigate the influence of intrinsically dense material in the lower mantle on core heat flux and the surface velocity field. The dense component is introduced into a system that features an established plate-like surface velocity field, and subsequently we analyse the evolution of the surface velocity as well as the interior thermal structure of the mantle. The distribution and mobility of the CAID material is investigated by varying its buoyancy ratio relative to the ambient mantle (ranging from 0.7 to 1.5), its total volume (3.5–10 per cent of the mantle volume) and its intrinsic viscosity (0.01–100 times the ambient mantle viscosity). We find at least three distinct distributions of the dense material can occur adjacent to the core–mantle boundary (CMB), including multiple piles of varying topography, a core enveloping layer and two diametrically opposed provinces (which can on occasion break into three distinct piles). The latter distribution mimics the morphology of the seismically observed large low shear wave velocity provinces (LLSVPs) and can occur over the entire range of CAID material viscosities. However, diametrically opposed provinces occur primarily in cases with CAID material buoyancy numbers of 0.7–0.85 (corresponding to contrasts in density between ambient and CAID material of 130 and 160 kg m−3, respectively) in our model (with an effective Rayleigh number of order 106). Steep and high topography piles are also obtained for cases featuring buoyancy ratios of 0.85 and viscosities 10–100 times that of the ambient mantle. An increase in relative density, as well as larger volumes of CAID material, lead to the development of a core enveloping layer. Our findings show that when two provinces are present core heat flux can be reduced by up to 50 per cent relative to cases in which CAID material is absent. Surface deformation quantified by Plateness is minimally influenced by variation of the properties of the dense material. Surface velocity is found to be reduced in general but mostly substantially in cases featuring high CAID material viscosities and large volumes (i.e. 10 per cent) or buoyancy ratios.
ISSN:0956-540X
1365-246X
DOI:10.1093/gji/ggz497