Coseismic drop of seismic velocity caused by the 2023 Turkey–Syria earthquakes
SUMMARY The Mw 7.8 earthquake in Turkey on 6 February 2023 was extraordinary for various reasons. It originated in depth of only 10 km, ruptured along a fault plane around 300 km long and the surface was covered by an extensive network of high-quality seismic instruments. The strong motions resulted...
Gespeichert in:
Veröffentlicht in: | Geophysical journal international 2023-09, Vol.234 (3), p.2465-2472 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | SUMMARY
The Mw 7.8 earthquake in Turkey on 6 February 2023 was extraordinary for various reasons. It originated in depth of only 10 km, ruptured along a fault plane around 300 km long and the surface was covered by an extensive network of high-quality seismic instruments. The strong motions resulted in a vast number of tragic casualties and huge material losses in Turkey and Syria. However, abundant and proximate seismic observations of this event and numerous aftershocks give an opportunity to deepen the understanding of earthquake processes. In this study, we carried out an assessment of coseismic changes of seismic velocity using passive image interferometry. We used data from one strong-motion and twenty-four broad-band sensors. We observed coseismic drops of seismic velocity, which reached up to −1.79 per cent at a location directly at the ruptured East Anatolian Fault Zone. Along the Mw 7.8 earthquake fault, we observe frequency dependence of the velocity changes. At frequencies above 0.5 Hz, the velocity drops seem to be higher at locations close to the ruptured faults than in the more distant areas. |
---|---|
ISSN: | 0956-540X 1365-246X |
DOI: | 10.1093/gji/ggad242 |