Seismic inversion of soil damping and stiffness using multichannel analysis of surface wave measurements in the marine environment

SUMMARY Determination of soil material damping is known to be difficult and uncertain, especially in the offshore environment. Using an advanced inversion methodology based on multichannel spectral analysis, Scholte and Love wave measurements are used to characterize subsea soil from a North Sea sit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical journal international 2020-05, Vol.221 (2), p.1439-1449
Hauptverfasser: Armstrong, M A, Ravasio, M, Versteijlen, W G, Verschuur, D J, Metrikine, A V, van Dalen, K N
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1449
container_issue 2
container_start_page 1439
container_title Geophysical journal international
container_volume 221
creator Armstrong, M A
Ravasio, M
Versteijlen, W G
Verschuur, D J
Metrikine, A V
van Dalen, K N
description SUMMARY Determination of soil material damping is known to be difficult and uncertain, especially in the offshore environment. Using an advanced inversion methodology based on multichannel spectral analysis, Scholte and Love wave measurements are used to characterize subsea soil from a North Sea site. After normalization, a determinant-based objective function is used in a genetic algorithm optimization to estimate the soil shear modulus. The inverted shear-modulus profile is comparable to previously published results for the same data, although a higher degree of certainty is achieved in the near-surface layers. The half-power bandwidth method is used for extracting the attenuation curve from the measurements and efficient reference data points are chosen based on wavelet compression. The material-damping ratio inversion is performed using a modified stochastic optimization algorithm. Accounting for measurement errors, the material-damping ratio profile is retrieved from the fundamental-mode Scholte wave with a high degree of certainty. Furthermore, a method is proposed for identifying the frequency dependence of the material-damping ratio from in situ measurements. No evidence for frequency dependence is found and the small-strain soil material-damping ratio at this site can be said to be frequency independent for the measured conditions.
doi_str_mv 10.1093/gji/ggaa080
format Article
fullrecord <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_gji_ggaa080</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/gji/ggaa080</oup_id><sourcerecordid>10.1093/gji/ggaa080</sourcerecordid><originalsourceid>FETCH-LOGICAL-a324t-8141bf413e92e2c64b4c0bf524b718b1da51ee68a39762923d70bf4b35bc96893</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqUw8Qc8saBQf8VNRlTxJVViAKRukZ2cU1eJU-WSoq78clzamel09z539-ol5JazB85yOas3flbXxrCMnZEJlzpNhNKrczJheaqTVLHVJblC3DDGFVfZhPx8gMfWl9SHHfTou0A7R7HzDa1Mu_WhpiZUFAfvXABEOuJh1o7N4Mu1CQGaCJhmjx7_NsfemRLot9kBbcHEHloIA8YHdFjHmel9AAph5_suHKRrcuFMg3BzqlPy9fz0uXhNlu8vb4vHZWKkUEOSRcfWKS4hFyBKrawqmXWpUHbOM8srk3IAnRmZz7XIhazmUVZWprbMdZbLKbk_3i37DrEHV2x7H-3sC86KQ3xFjK84xRfpuyPdjdt_wV9bmXT4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Seismic inversion of soil damping and stiffness using multichannel analysis of surface wave measurements in the marine environment</title><source>Oxford Journals Open Access Collection</source><creator>Armstrong, M A ; Ravasio, M ; Versteijlen, W G ; Verschuur, D J ; Metrikine, A V ; van Dalen, K N</creator><creatorcontrib>Armstrong, M A ; Ravasio, M ; Versteijlen, W G ; Verschuur, D J ; Metrikine, A V ; van Dalen, K N</creatorcontrib><description>SUMMARY Determination of soil material damping is known to be difficult and uncertain, especially in the offshore environment. Using an advanced inversion methodology based on multichannel spectral analysis, Scholte and Love wave measurements are used to characterize subsea soil from a North Sea site. After normalization, a determinant-based objective function is used in a genetic algorithm optimization to estimate the soil shear modulus. The inverted shear-modulus profile is comparable to previously published results for the same data, although a higher degree of certainty is achieved in the near-surface layers. The half-power bandwidth method is used for extracting the attenuation curve from the measurements and efficient reference data points are chosen based on wavelet compression. The material-damping ratio inversion is performed using a modified stochastic optimization algorithm. Accounting for measurement errors, the material-damping ratio profile is retrieved from the fundamental-mode Scholte wave with a high degree of certainty. Furthermore, a method is proposed for identifying the frequency dependence of the material-damping ratio from in situ measurements. No evidence for frequency dependence is found and the small-strain soil material-damping ratio at this site can be said to be frequency independent for the measured conditions.</description><identifier>ISSN: 0956-540X</identifier><identifier>EISSN: 1365-246X</identifier><identifier>DOI: 10.1093/gji/ggaa080</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Geophysical journal international, 2020-05, Vol.221 (2), p.1439-1449</ispartof><rights>The Author(s) 2020. Published by Oxford University Press on behalf of The Royal Astronomical Society. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a324t-8141bf413e92e2c64b4c0bf524b718b1da51ee68a39762923d70bf4b35bc96893</citedby><cites>FETCH-LOGICAL-a324t-8141bf413e92e2c64b4c0bf524b718b1da51ee68a39762923d70bf4b35bc96893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Armstrong, M A</creatorcontrib><creatorcontrib>Ravasio, M</creatorcontrib><creatorcontrib>Versteijlen, W G</creatorcontrib><creatorcontrib>Verschuur, D J</creatorcontrib><creatorcontrib>Metrikine, A V</creatorcontrib><creatorcontrib>van Dalen, K N</creatorcontrib><title>Seismic inversion of soil damping and stiffness using multichannel analysis of surface wave measurements in the marine environment</title><title>Geophysical journal international</title><description>SUMMARY Determination of soil material damping is known to be difficult and uncertain, especially in the offshore environment. Using an advanced inversion methodology based on multichannel spectral analysis, Scholte and Love wave measurements are used to characterize subsea soil from a North Sea site. After normalization, a determinant-based objective function is used in a genetic algorithm optimization to estimate the soil shear modulus. The inverted shear-modulus profile is comparable to previously published results for the same data, although a higher degree of certainty is achieved in the near-surface layers. The half-power bandwidth method is used for extracting the attenuation curve from the measurements and efficient reference data points are chosen based on wavelet compression. The material-damping ratio inversion is performed using a modified stochastic optimization algorithm. Accounting for measurement errors, the material-damping ratio profile is retrieved from the fundamental-mode Scholte wave with a high degree of certainty. Furthermore, a method is proposed for identifying the frequency dependence of the material-damping ratio from in situ measurements. No evidence for frequency dependence is found and the small-strain soil material-damping ratio at this site can be said to be frequency independent for the measured conditions.</description><issn>0956-540X</issn><issn>1365-246X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqUw8Qc8saBQf8VNRlTxJVViAKRukZ2cU1eJU-WSoq78clzamel09z539-ol5JazB85yOas3flbXxrCMnZEJlzpNhNKrczJheaqTVLHVJblC3DDGFVfZhPx8gMfWl9SHHfTou0A7R7HzDa1Mu_WhpiZUFAfvXABEOuJh1o7N4Mu1CQGaCJhmjx7_NsfemRLot9kBbcHEHloIA8YHdFjHmel9AAph5_suHKRrcuFMg3BzqlPy9fz0uXhNlu8vb4vHZWKkUEOSRcfWKS4hFyBKrawqmXWpUHbOM8srk3IAnRmZz7XIhazmUVZWprbMdZbLKbk_3i37DrEHV2x7H-3sC86KQ3xFjK84xRfpuyPdjdt_wV9bmXT4</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Armstrong, M A</creator><creator>Ravasio, M</creator><creator>Versteijlen, W G</creator><creator>Verschuur, D J</creator><creator>Metrikine, A V</creator><creator>van Dalen, K N</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200501</creationdate><title>Seismic inversion of soil damping and stiffness using multichannel analysis of surface wave measurements in the marine environment</title><author>Armstrong, M A ; Ravasio, M ; Versteijlen, W G ; Verschuur, D J ; Metrikine, A V ; van Dalen, K N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a324t-8141bf413e92e2c64b4c0bf524b718b1da51ee68a39762923d70bf4b35bc96893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Armstrong, M A</creatorcontrib><creatorcontrib>Ravasio, M</creatorcontrib><creatorcontrib>Versteijlen, W G</creatorcontrib><creatorcontrib>Verschuur, D J</creatorcontrib><creatorcontrib>Metrikine, A V</creatorcontrib><creatorcontrib>van Dalen, K N</creatorcontrib><collection>CrossRef</collection><jtitle>Geophysical journal international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Armstrong, M A</au><au>Ravasio, M</au><au>Versteijlen, W G</au><au>Verschuur, D J</au><au>Metrikine, A V</au><au>van Dalen, K N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Seismic inversion of soil damping and stiffness using multichannel analysis of surface wave measurements in the marine environment</atitle><jtitle>Geophysical journal international</jtitle><date>2020-05-01</date><risdate>2020</risdate><volume>221</volume><issue>2</issue><spage>1439</spage><epage>1449</epage><pages>1439-1449</pages><issn>0956-540X</issn><eissn>1365-246X</eissn><abstract>SUMMARY Determination of soil material damping is known to be difficult and uncertain, especially in the offshore environment. Using an advanced inversion methodology based on multichannel spectral analysis, Scholte and Love wave measurements are used to characterize subsea soil from a North Sea site. After normalization, a determinant-based objective function is used in a genetic algorithm optimization to estimate the soil shear modulus. The inverted shear-modulus profile is comparable to previously published results for the same data, although a higher degree of certainty is achieved in the near-surface layers. The half-power bandwidth method is used for extracting the attenuation curve from the measurements and efficient reference data points are chosen based on wavelet compression. The material-damping ratio inversion is performed using a modified stochastic optimization algorithm. Accounting for measurement errors, the material-damping ratio profile is retrieved from the fundamental-mode Scholte wave with a high degree of certainty. Furthermore, a method is proposed for identifying the frequency dependence of the material-damping ratio from in situ measurements. No evidence for frequency dependence is found and the small-strain soil material-damping ratio at this site can be said to be frequency independent for the measured conditions.</abstract><pub>Oxford University Press</pub><doi>10.1093/gji/ggaa080</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0956-540X
ispartof Geophysical journal international, 2020-05, Vol.221 (2), p.1439-1449
issn 0956-540X
1365-246X
language eng
recordid cdi_crossref_primary_10_1093_gji_ggaa080
source Oxford Journals Open Access Collection
title Seismic inversion of soil damping and stiffness using multichannel analysis of surface wave measurements in the marine environment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T13%3A45%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Seismic%20inversion%20of%20soil%20damping%20and%20stiffness%20using%20multichannel%20analysis%20of%20surface%20wave%20measurements%20in%20the%20marine%20environment&rft.jtitle=Geophysical%20journal%20international&rft.au=Armstrong,%20M%20A&rft.date=2020-05-01&rft.volume=221&rft.issue=2&rft.spage=1439&rft.epage=1449&rft.pages=1439-1449&rft.issn=0956-540X&rft.eissn=1365-246X&rft_id=info:doi/10.1093/gji/ggaa080&rft_dat=%3Coup_cross%3E10.1093/gji/ggaa080%3C/oup_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/gji/ggaa080&rfr_iscdi=true