Seismic inversion of soil damping and stiffness using multichannel analysis of surface wave measurements in the marine environment

SUMMARY Determination of soil material damping is known to be difficult and uncertain, especially in the offshore environment. Using an advanced inversion methodology based on multichannel spectral analysis, Scholte and Love wave measurements are used to characterize subsea soil from a North Sea sit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical journal international 2020-05, Vol.221 (2), p.1439-1449
Hauptverfasser: Armstrong, M A, Ravasio, M, Versteijlen, W G, Verschuur, D J, Metrikine, A V, van Dalen, K N
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:SUMMARY Determination of soil material damping is known to be difficult and uncertain, especially in the offshore environment. Using an advanced inversion methodology based on multichannel spectral analysis, Scholte and Love wave measurements are used to characterize subsea soil from a North Sea site. After normalization, a determinant-based objective function is used in a genetic algorithm optimization to estimate the soil shear modulus. The inverted shear-modulus profile is comparable to previously published results for the same data, although a higher degree of certainty is achieved in the near-surface layers. The half-power bandwidth method is used for extracting the attenuation curve from the measurements and efficient reference data points are chosen based on wavelet compression. The material-damping ratio inversion is performed using a modified stochastic optimization algorithm. Accounting for measurement errors, the material-damping ratio profile is retrieved from the fundamental-mode Scholte wave with a high degree of certainty. Furthermore, a method is proposed for identifying the frequency dependence of the material-damping ratio from in situ measurements. No evidence for frequency dependence is found and the small-strain soil material-damping ratio at this site can be said to be frequency independent for the measured conditions.
ISSN:0956-540X
1365-246X
DOI:10.1093/gji/ggaa080