“Trapped reentry” as a dormant source of acute focal arrhythmia and fractionated atrial electrograms under sinus rhythm

Abstract Background Diseased atria are characterised by functional and structural heterogeneities (e.g. dense fibrotic regions), which add to abnormal impulse generation and propagation, like ectopy and block. These heterogeneities are thought to play a role in the origin of complex fractionated atr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European heart journal 2020-11, Vol.41 (Supplement_2)
Hauptverfasser: De Coster, T, Teplenin, A.S, Feola, I, Van Brakel, T.J, De Vries, A.A.F, Zeppenfeld, K, Pijnappels, D.A
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Background Diseased atria are characterised by functional and structural heterogeneities (e.g. dense fibrotic regions), which add to abnormal impulse generation and propagation, like ectopy and block. These heterogeneities are thought to play a role in the origin of complex fractionated atrial electrograms (CFAEs) under sinus rhythm (SR) in atrial fibrillation (AF) patients, but also in the onset and perpetuation (e.g. reentry) of this disorder. The underlying mechanisms, however, remain incompletely understood. Purpose To test the hypothesis that dense local fibrotic regions could create an electrically isolated conduction pathway in which reentry can be established via ectopy and block to become “trapped” (giving rise to CFAEs under SR), only to be “released” under dynamic changes at a connecting isthmus (causing acute focal arrhythmia (FA)). Methods The geometrical properties of such an electrically isolated pathway, under which reentry could be trapped and released, were explored in vitro using optogenetics by creating conduction blocks of any shape by means of light-gated depolarizing ion channels (CatCh) and patterned illumination. Insight from these studies was used for complementary computational investigation in virtual human atria to assess clinical translation and to provide deeper mechanistic insight. Results Optical mapping studies, in monolayers of CatCh-activated neonatal rat atrial cardiomyocytes, revealed that reentry could indeed be established and trapped by creating an electrically isolated pathway with a connecting isthmus causing source-sink mismatch. This proves that a tachyarrhythmia can exist locally with SR prevailing in the bulk of the monolayer. Next, it was confirmed under which conditions reentry could escape this pathway by widening of the isthmus (i.e. overcoming the source-sink mismatch), thereby converting this local dormant arrhythmic source into an active driver with global impact (i.e. acute monolayer-wide FA). This novel phenomenon was shown in circuits
ISSN:0195-668X
1522-9645
DOI:10.1093/ehjci/ehaa946.3697